【總結(jié)】3確定二次函數(shù)的表達(dá)式..二次函數(shù)解析式有哪幾種表達(dá)方式?一般式:y=ax2+bx+c頂點(diǎn)式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個(gè)點(diǎn)的坐標(biāo),可用待定系數(shù)法求其解析式.交點(diǎn)式:y=a(x-x1)(x-x2)解析:設(shè)所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 02:54
【總結(jié)】3確定二次函數(shù)的表達(dá)式【基礎(chǔ)梳理】確定二次函數(shù)表達(dá)式的一般方法已知條件選用表達(dá)式的形式頂點(diǎn)和另一點(diǎn)的坐標(biāo)_______二次函數(shù)各項(xiàng)系數(shù)中的一個(gè)和兩點(diǎn)的坐標(biāo)_______三個(gè)點(diǎn)的坐標(biāo)_______頂點(diǎn)式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達(dá)式一般需要三個(gè)條件.(
2025-06-12 13:43
【總結(jié)】小結(jié)與復(fù)習(xí)第二章二次函數(shù)要點(diǎn)梳理考點(diǎn)講練課堂小結(jié)課后作業(yè)一、二次函數(shù)的定義要點(diǎn)梳理1.一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么y叫做x的二次函數(shù).特別地,當(dāng)a≠0,b=c=0時(shí),y=ax2是二次函數(shù)的特殊形式.2.二次函數(shù)的三種基本形式(1)一般式:y=ax2
2025-06-14 03:01
2025-06-14 02:05
【總結(jié)】確定二次函數(shù)的表達(dá)式第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)學(xué)習(xí)目標(biāo).(難點(diǎn)).(重點(diǎn))導(dǎo)入新課復(fù)習(xí)引入y=kx+b(k≠0)有幾個(gè)待定系數(shù)?通常需要已知幾個(gè)點(diǎn)的坐標(biāo)求出它的表達(dá)式??它的一般步驟是什么?2個(gè)2個(gè)待定系數(shù)法(1)設(shè):(表達(dá)式)
2025-06-18 00:42
2025-06-19 07:25
【總結(jié)】數(shù)學(xué)·新課標(biāo)(BS)下冊(cè)第二章復(fù)習(xí)(二)┃知識(shí)歸類┃知識(shí)歸納┃數(shù)學(xué)·新課標(biāo)(BS)1.利用二次函數(shù)求最值的問題(1)利潤最大化——體會(huì)利用二次函數(shù)求解最值的一般步驟.利用二次函數(shù)解決“利潤最大化”問題的一般步驟:①找出銷售單價(jià)與利潤之間的函數(shù)關(guān)系式(注明范圍);②求出
2024-12-07 22:58
【總結(jié)】數(shù)學(xué)·新課標(biāo)(BS)下冊(cè)第二章復(fù)習(xí)(一)┃知識(shí)歸類┃知識(shí)歸納┃數(shù)學(xué)·新課標(biāo)(BS)1.二次函數(shù)的概念一般地,形如(a,b,c是常數(shù),)的函數(shù),叫做二次函數(shù).[注意](1)等號(hào)右邊必須是整式;(2)自變量的最高次數(shù)
【總結(jié)】5二次函數(shù)與一元二次方程,體會(huì)方程與函數(shù)之間的聯(lián)系.x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)數(shù)根、兩個(gè)相等的實(shí)數(shù)根和沒有實(shí)數(shù)根.x軸交點(diǎn)的橫坐標(biāo).ax2+bx+c=0的求根公式是什么?當(dāng)b2-4ac≥0時(shí),當(dāng)b2-4ac0時(shí),方程無實(shí)數(shù)根.aacbbx2
2025-06-15 02:55
【總結(jié)】5二次函數(shù)與一元二次方程【基礎(chǔ)梳理】y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)的關(guān)系拋物線y=ax2+bx+c與x軸的交點(diǎn)的個(gè)數(shù)一元二次方程ax2+bx+c=0(a≠0)的根的情況2_______________1_______________0_______
2025-06-12 12:32
2025-06-21 02:27
2025-06-15 03:01
【總結(jié)】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎
2025-06-12 12:35
【總結(jié)】二次函數(shù)【二次函數(shù)的定義】(考點(diǎn):二次函數(shù)的二次項(xiàng)系數(shù)不為0,且二次函數(shù)的表達(dá)式必須為整式)1、下列函數(shù)中,是二次函數(shù)的是.①y=x2-4x+1;②y=2x2; ③y=2x2+4x; ④y=-3x;⑤y=-2x-1; ⑥y=mx2+nx+p; ⑦y=錯(cuò)誤!未定義書簽。;
2025-06-23 08:44