【總結】5二次函數(shù)與一元二次方程,體會方程與函數(shù)之間的聯(lián)系.x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系,理解何時方程有兩個不等的實數(shù)根、兩個相等的實數(shù)根和沒有實數(shù)根.x軸交點的橫坐標.ax2+bx+c=0的求根公式是什么?當b2-4ac≥0時,當b2-4ac0時,方程無實數(shù)根.aacbbx2
2025-06-15 02:55
【總結】5二次函數(shù)與一元二次方程【基礎梳理】y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)的關系拋物線y=ax2+bx+c與x軸的交點的個數(shù)一元二次方程ax2+bx+c=0(a≠0)的根的情況2_______________1_______________0_______
2025-06-12 12:32
2025-06-21 02:27
2025-06-15 03:01
【總結】3確定二次函數(shù)的表達式【基礎梳理】確定二次函數(shù)表達式的一般方法已知條件選用表達式的形式頂點和另一點的坐標_______二次函數(shù)各項系數(shù)中的一個和兩點的坐標_______三個點的坐標_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達式一般需要三個條件.(
2025-06-14 06:48
【總結】3確定二次函數(shù)的表達式..二次函數(shù)解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標,可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 03:00
2025-06-15 02:54
2025-06-12 13:43
【總結】4二次函數(shù)的應用第1課時【基礎梳理】利用二次函數(shù)求幾何圖形的最大面積的基本方法(1)引入自變量.(2)用含自變量的代數(shù)式分別表示與所求幾何圖形相關的量.(3)根據(jù)幾何圖形的特征,列出其面積的計算公式,并且用函數(shù)表示這個面積.(4)根據(jù)函數(shù)關系式,求出最大值及取得最大值時自變量的值.【自我診斷】
【總結】4二次函數(shù)的應用第1課時,體會數(shù)學的模型思想和數(shù)學應用價值.間的二次函數(shù)關系,并運用二次函數(shù)的知識解決實際問題.20)yaxbxca????二次函數(shù)(24,)4acba?b頂點坐標為(-2a244acba?①當a0時,y有最小值=②當a
【總結】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎
2025-06-12 12:35
2025-06-12 12:28
【總結】謝謝觀看Thankyouforwatching!
2025-06-13 20:04