【總結】離散型隨機變量典型題1.有3張形狀、大小、質量完全相同的卡片,在各張卡片上分別標上0、1、2。現(xiàn)從這3張卡片中任意抽出一張,讀出其標號,然后把這張卡片放回去,再抽一張,其標號為,記。(1)求的分布列;(2)求和。解:(1)可能取的值為0、1、2、4。……(2分)且,,,……(6分)所求的分布列為:
2025-03-25 02:23
【總結】《離散型隨機變量及其分布列-隨機變量》教學目標?、離散型隨機變量、連續(xù)型隨機變量的意義,并能說明隨機變量取的值所表示的隨機試驗的結果?2.通過本課的學習,能舉出一些隨機變量的例子,并能識別是離散型隨機變量,還是連續(xù)型隨機變量?教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義?教學難點:隨機變量、離散型
2025-11-09 12:12
【總結】專業(yè)資料整理分享理科數(shù)學復習專題統(tǒng)計與概率離散型隨機變量及其分布列知識點一1、離散型隨機變量:隨著實驗結果變化而變化的變量稱為隨機變量,常用字母,X,Y表示,所有取值可以一一列出的隨機變量,稱為離散型隨機變量。2、離散型隨機變量的分布列及其性質:(
2025-04-04 05:17
【總結】離散型隨機變量的均值1、什么叫n次獨立重復試驗?一.復習其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項分布,記作X~B(n,p)一般地,由n次試驗構成,且每次試驗互相獨立完成,每次試驗的結果僅有兩種對立的狀態(tài),即A與,每次試驗中P(A)
2025-11-09 08:45
【總結】離散型隨機變量的方差一般地,若離散型隨機變量X的概率分布為則稱E(X)=x1p1+x2p2+…+xnpn為X的均值或數(shù)學期望,記為E(X)或μ.Xx1x2…xnPp1p2…pn其中pi≥0,i=1,2,…,n;p1+p2+…+pn=11、離散型隨機變量的均值的定義
【總結】1.離散型隨機變量的分布列(1)離散型隨機變量的分布列若離散型隨機變量X可能取的不同值為x1,x2,…,xi,…xn,X取每一個值xi(i=1,2,…,n)的概率P(X=xi)=pi,則表基礎知識梳理Xx1x2?xi?xnP??p1p2pipn稱為離散型隨機變量
2025-11-01 00:24
【總結】離散型隨機變量分布列及其數(shù)學期望安徽省肥西中學謝守寧考點早知道,目標早明確?概念,了解分布列對于刻畫隨機現(xiàn)象的重要性.?n次獨立重復試驗的模型,掌握二項分布,并能利用它們解決一些簡單的實際問題.?,體會模型化思想,在解決問題中的作用,感受概率在生
2025-10-03 08:22
【總結】第九節(jié)離散型隨機變量的均值與方差、正態(tài)分布高考成功方案第一步高考成功方案第二步高考成功方案第三步高考成功方案第四步第十章計數(shù)原理、概率、隨機變量及分布列返回考綱點擊1.理解取有限個值的離散型隨機變量均值、方
2025-04-30 03:54
【總結】《離散型隨機變量及其分布列-離散型隨機變量分布列》教學目的?1理解離散型隨機變量的分布列的意義,會求某些簡單的離散型隨機變量的分布列;?⒉掌握離散型隨機變量的分布列的兩個基本性質,并會用它來解決一些簡單的問題.?⒊了解二項分布的概念,能舉出一些服從二項分布的隨機變量的例子?教學重點:離散型隨機變量的分布列的概念
【總結】量的均值高二數(shù)學選修2-3一、復習回顧1、離散型隨機變量的分布列XP1xix2x······1p2pip······2、離散型隨機變量分布列的性質:(1)pi≥0,i=1,2,
2025-11-21 14:42
【總結】第二節(jié)離散隨機變量及其分布律?????xxkkpxXPxF}{)(分布函數(shù)分布律}{kkxXPp??離散型隨機變量的分布函數(shù)離散型隨機變量分布律與分布函數(shù)的關系.)(}{)(?????????xxxxkkkkxXPpxXPxF二、常見離散型隨機變量的概率分布1、兩
2025-05-13 21:14
【總結】離散型隨機變量的分布列學習目標?1、了解隨機變量、離散型隨機變量的概念及意義?2、掌握類比的數(shù)學思想.?3,提高抽象概括能力,數(shù)學的提出,分析,解決問題的能力.1.隨機變量先看下面的問題.某人射擊一次,可能出現(xiàn)命中0環(huán),命中1環(huán),……,命中10環(huán)等結果,即可能出現(xiàn)的
2025-08-16 02:26
【總結】第九節(jié)離散型隨機變量的均值與方差、正態(tài)分布抓基礎明考向提能力教你一招我來演練第十章計數(shù)原理、概率、隨機變量及其分布返回[備考方向要明了]考什么、方差的概念,會
2025-05-13 06:45
【總結】例1:某保險公司新開設了一項保險業(yè)務,若在一年內事件E發(fā)生,該公司要賠償a元.設在一年內E發(fā)生的概率為p,為使公司收益的期望值等于a的10%,公司應要求顧客交多少保險金?例2:將一枚硬幣拋擲20次,求正面次數(shù)與反面次數(shù)之差?的概率分布,并求出?的期望E?與方差D?.例3(07全國高考)某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客
2025-10-07 20:03
【總結】第二章隨機變量及其分布§2離散型隨機變量及其分布律1/23用同一支槍對目標進行射擊,直到擊中目標為止,則射擊次數(shù)是離散型.X離散型非離散型散型隨機變量將一枚硬幣連拋三次,觀察正、反面出現(xiàn)的情況,定義正面出現(xiàn)的次數(shù)X?至多可列的取值為
2025-04-29 12:14