freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

大學高等數(shù)學教材(已修改)

2025-04-16 04:00 本頁面
 

【正文】 .. . . ..學習參考一、函數(shù)與極限集合的概念一般地我們把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合(簡稱集)。集合具有確定性(給定集合的元素必須是確定的)和互異性(給定集合中的元素是互不相同的)。比如“身材較高的人”不能構成集合,因為它的元素不是確定的。我們通常用大字拉丁字母A、B、C、……表示集合,用小寫拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就說a屬于A,記作:a∈A,否則就說a不屬于A,記作:aA。 ⑴、全體非負整數(shù)組成的集合叫做非負整數(shù)集(或自然數(shù)集)。記作N⑵、所有正整數(shù)組成的集合叫做正整數(shù)集。記作N+或N+。⑶、全體整數(shù)組成的集合叫做整數(shù)集。記作Z。⑷、全體有理數(shù)組成的集合叫做有理數(shù)集。記作Q。⑸、全體實數(shù)組成的集合叫做實數(shù)集。記作R。集合的表示方法⑴、列舉法:把集合的元素一一列舉出來,并用“{}”括起來表示集合⑵、描述法:用集合所有元素的共同特征來表示集合。集合間的基本關系⑴、子集:一般地,對于兩個集合A、B,如果集合A中的任意一個元素都是集合B的元素,我們就說A、B有包含關系,稱集合A為集合B的子集,記作A B(或B A)。⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此時集合A中的元素與集合B中的元素完全一樣,因此集合A與集合B相等,記作A=B。⑶、真子集:如何集合A是集合B的子集,但存在一個元素屬于B但不屬于A,我們稱集合A是集合B的真子集。⑷、空集:我們把不含任何元素的集合叫做空集。記作 ,并規(guī)定,空集是任何集合的子集。⑸、由上述集合之間的基本關系,可以得到下面的結論:①、任何一個集合是它本身的子集。即A A②、對于集合A、B、C,如果A是B的子集,B是C的子集,則A是C的子集。③、我們可以把相等的集合叫做“等集”,這樣的話子集包括“真子集”和“等集”。集合的基本運算⑴、并集:一般地,由所有屬于集合A或?qū)儆诩螧的元素組成的集合稱為A與B的并集。記作A∪B。(在求并集時,它們的公共元素在并集中只能出現(xiàn)一次。)即A∪B={x|x∈A,或x∈B}。⑵、交集:一般地,由所有屬于集合A且屬于集合B的元素組成的集合稱為A與B的交集。記作A∩B。即A∩B={x|x∈A,且x∈B}。⑶、補集:①全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集。通常記作U。②補集:對于一個集合A,由全集U中不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集。簡稱為集合A的補集,記作CUA。即CUA={x|x∈U,且x A}。集合中元素的個數(shù)⑴、有限集:我們把含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。⑵、用card來表示有限集中元素的個數(shù)。例如A={a,b,c},則card(A)=3。⑶、一般地,對任意兩個集合A、B,有card(A)+card(B)=card(A∪B)+card(A∩B)我的問題:學校里開運動會,設A={x|x是參加一百米跑的同學},B={x|x是參加二百米跑的同學},C={x|x是參加四百米跑的同學}。學校規(guī)定,每個參加上述比賽的同學最多只能參加兩項,請你用集合的運算說明這項規(guī)定,并解釋以下集合運算的含義。⑴、A∪B;⑵、A∩B。在平面直角坐標系中,集合C={(x,y)|y=x}表示直線y=x,從這個角度看,集合D={(x,y)|方程組:2xy=1,x+4y=5}表示什么?集合C、D之間有什么關系?請分別用集合語言和幾何語言說明這種關系。已知集合A={x|1≤x≤3},B={x|(x1)(xa)=0}。試判斷B是不是A的子集?是否存在實數(shù)a使A=B成立?對于有限集合A、B、C,能不能找出這三個集合中元素個數(shù)與交集、并集元素個數(shù)之間的關系呢?無限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能設計一種比較這兩個集合中元素個數(shù)多少的方法嗎?常量與變量⑴、變量的定義:我們在觀察某一現(xiàn)象的過程時,常常會遇到各種不同的量,其中有的量在過程中不起變化,我們把其稱之為常量;有的量在過程中是變化的,也就是可以取不同的數(shù)值,我們則把其稱之為變量。注:在過程中還有一種量,它雖然是變化的,但是它的變化相對于所研究的對象是極其微小的,我們則把它看作常量。⑵、變量的表示:如果變量的變化是連續(xù)的,則常用區(qū)間來表示其變化范圍。在數(shù)軸上來說,區(qū)間是指介于某兩點之間的線段上點的全體。區(qū)間的名稱區(qū)間的滿足的不等式區(qū)間的記號區(qū)間在數(shù)軸上的表示閉區(qū)間a≤x≤b[a,b]開區(qū)間a<x<b(a,b)半開區(qū)間a<x≤b或a≤x<b(a,b]或[a,b)以上我們所述的都是有限區(qū)間,除此之外,還有無限區(qū)間:[a,+∞):表示不小于a的實數(shù)的全體,也可記為:a≤x<+∞;(∞,b):表示小于b的實數(shù)的全體,也可記為:∞<x<b;(∞,+∞):表示全體實數(shù),也可記為:∞<x<+∞注:其中∞和+∞,分別讀作負無窮大和正無窮大,它們不是數(shù),僅僅是記號。⑶、鄰域:設α與δ是兩個實數(shù),且δ>│xα│<δ的實數(shù)x的全體稱為點α的δ鄰域,點α稱為此鄰域的中心,δ稱為此鄰域的半徑。函數(shù)⑴、函數(shù)的定義:如果當變量x在其變化范圍內(nèi)任意取定一個數(shù)值時,量y按照一定的法則f總有確定的數(shù)值與它對應,則稱y是x的函數(shù)。變量x的變化范圍叫做這個函數(shù)的定義域。通常x叫做自變量,y叫做函數(shù)值(或因變量),變量y的變化范圍叫做這個函數(shù)的值域。注:為了表明y是x的函數(shù),我們用記號y=f(x)、y=F(x)等等來表示。這里的字母f、F表示y與x之間的對應法則即函數(shù)關系,它們是可以任意采用不同的字母來表示的。如果自變量在定義域內(nèi)任取一個確定的值時,函數(shù)只有一個確定的值和它對應,這種函數(shù)叫做單值函數(shù),否則叫做多值函數(shù)。這里我們只討論單值函數(shù)。⑵、函數(shù)相等由函數(shù)的定義可知,一個函數(shù)的構成要素為:定義域、對應關系和值域。由于值域是由定義域和對應關系決定的,所以,如果兩個函數(shù)的定義域和對應關系完全一致,我們就稱兩個函數(shù)相等。⑶、域函數(shù)的表示方法a):解析法:用數(shù)學式子表示自變量和因變量之間的對應關系的方法即是解析法。例:直角坐標系中,半徑為r、圓心在原點的圓的方程是:x2+y2=r2b):表格法:將一系列的自變量值與對應的函數(shù)值列成表來表示函數(shù)關系的方法即是表格法。例:在實際應用中,我們經(jīng)常會用到的平方表,三角函數(shù)表等都是用表格法表示的函數(shù)。c):圖示法:用坐標平面上曲線來表示函數(shù)的方法即是圖示法。一般用橫坐標表示自變量,縱坐標表示因變量。例:直角坐標系中,半徑為r、圓心在原點的圓用圖示法表示為:函數(shù)的簡單性態(tài)⑴、函數(shù)的有界性:如果對屬于某一區(qū)間I的所有x值總有│f(x)│≤M成立,其中M是一個與x無關的常數(shù),那么我們就稱f(x)在區(qū)間I有界,否則便稱無界。注:一個函數(shù),如果在其整個定義域內(nèi)有界,則稱為有界函數(shù)例題:函數(shù)cosx在(∞,+∞)內(nèi)是有界的.⑵、函數(shù)的單調(diào)性:如果函數(shù)在區(qū)間(a,b)內(nèi)隨著x增大而增大,即:對于(a,b)內(nèi)任意兩點x1及x2,當x1<x2時,有 ,則稱函數(shù)在區(qū)間(a,b)內(nèi)是單調(diào)增加的。如果函數(shù)在區(qū)間(a,b)內(nèi)隨著x增大而減小,即:對于(a,b)內(nèi)任意兩點x1及x2,當x1<x2時,有,則稱函數(shù)在區(qū)間(a,b)內(nèi)是單調(diào)減小的。例題:函數(shù)=x2在區(qū)間(∞,0)上是單調(diào)減小的,在區(qū)間(0,+∞)上是單調(diào)增加的。⑶、函數(shù)的奇偶性如果函數(shù)對于定義域內(nèi)的任意x都滿足=,則叫做偶函數(shù);如果函數(shù)對于定義域內(nèi)的任意x都滿足=,則叫做奇函數(shù)。注:偶函數(shù)的圖形關于y軸對稱,奇函數(shù)的圖形關于原點對稱。⑷、函數(shù)的周期性對于函數(shù),若存在一個不為零的數(shù)l,使得關系式對于定義域內(nèi)任何x值都成立,則叫做周期函數(shù),l是的周期。注:我們說的周期函數(shù)的周期是指最小正周期。例題:函數(shù)是以2π為周期的周期函數(shù);函數(shù)tgx是以π為周期的周期函數(shù)。反函數(shù)⑴、反函數(shù)的定義:設有函數(shù),若變量y在函數(shù)的值域內(nèi)任取一值y0時,變量x在函數(shù)的定義域內(nèi)必有一值x0與之對應,即,稱為函數(shù)的反函數(shù).注:由此定義可知,函數(shù)也是函數(shù)的反函數(shù)。 ⑵、反函數(shù)的存在定理:若在(a,b)上嚴格增(減),其值域為 R,則它的反函數(shù)必然在R上確定,且嚴格增(減).注:嚴格增(減)即是單調(diào)增(減)例題:y=x2,其定義域為(∞,+∞),值域為[0,+∞).對于y取定的非負值,可求得x=177。.若我們不加條件,由y的值就不能唯一確定x的值,也就是在區(qū)間(∞,+∞)上,函數(shù)不是嚴格增(減),故其沒有反函數(shù)。如果我們加上條件,要求x≥0,則對y≥0、x=就是y=x2在要求x≥0時的反函數(shù)。即是:函數(shù)在此要求下嚴格增(減). ⑶、反函數(shù)的性質(zhì):在同一坐標平面內(nèi),與的圖形是關于直線y=x對稱的。例題:函數(shù)與函數(shù)互為反函數(shù),則它們的圖形在同一直角坐標系中是關于直線y=x對稱的。如右圖所示: 復合函數(shù)復合函數(shù)的定義:若y是u的函數(shù):,而u又是x的函數(shù):,且的函數(shù)值的全部或部分在的定義域內(nèi),那末,y通過u的聯(lián)系也是x的函數(shù),我們稱后一個函數(shù)是由函數(shù)及復合而成的函數(shù),簡稱復合函數(shù),記作,其中u叫做中間變量。注:并不是任意兩個函數(shù)就能復合;復合函數(shù)還可以由更多函數(shù)構成。例題:函數(shù)與函數(shù)是不能復合成一個函數(shù)的。因為對于的定義域(∞,+∞)中的任何x值所對應的u值(都大于或等于2),使都沒有定義。初等函數(shù)⑴、基本初等函數(shù):我們最常用的有五種基本初等函數(shù),分別是:指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)及反三角函數(shù)。下面我們用表格來把它們總結一下:函數(shù)名稱函數(shù)的記號函數(shù)的圖形函數(shù)的性質(zhì)指數(shù)函數(shù)a):不論x為何值,y總為正數(shù)。b):當x=0時,y=1.對數(shù)函數(shù)a):其圖形總位于y軸右側,并過(1,0)點b):當a>1時,在區(qū)間(0,1)的值為負;在區(qū)間(,+∞)的值為正;在定義域內(nèi)單調(diào)增.冪函數(shù)a為任意實數(shù)這里只畫出部分函數(shù)圖形的一部分。令a=m/na):當m為偶數(shù)n為奇數(shù)時,y是偶函數(shù)。b):當m,n都是奇數(shù)時,y是奇函數(shù)。c):當m奇n偶時,y在(∞,0)無意義.三角函數(shù)(正弦函數(shù))這里只寫出了正弦函數(shù)a):正弦函數(shù)是以2π為周期的周期函數(shù)b):正弦函數(shù)是奇函數(shù)且反三角函數(shù)(反正弦函數(shù))這里只寫出了反正弦函數(shù)a):由于此函數(shù)為多值函數(shù),因此我們此函數(shù)值限制在[π/2,π/2]上,并稱其為反正弦函數(shù)的主值.⑵、初等函數(shù):由基本初等函數(shù)與常數(shù)經(jīng)過有限次的有理運算及有限次的函數(shù)復合所產(chǎn)生并且能用一個解析式表出的函數(shù)稱為初等函數(shù).例題:是初等函數(shù)。雙曲函數(shù)及反雙曲函數(shù)⑴、雙曲函數(shù):在應用中我們經(jīng)常遇到的雙曲函數(shù)是:(用表格來描述)函數(shù)的名稱函數(shù)的表達式函數(shù)的圖形函數(shù)的性質(zhì)雙曲正弦a):其定義域為:(∞,+∞);b):是奇函數(shù);c):在定義域內(nèi)是單調(diào)增雙曲余弦a):其定義域為:(∞,+∞);b):是偶函數(shù);c):其圖像過點(0,1);雙曲正切a):其定義域為:(∞,+∞);b):是奇函數(shù);c):其圖形夾在水平直線y=1及y=1之間;在定域內(nèi)單調(diào)增;我們再來看一下雙曲函數(shù)與三角函數(shù)的區(qū)別:雙曲函數(shù)的性質(zhì)三角函數(shù)的性質(zhì)shx與thx是奇函數(shù),chx是偶函數(shù)sinx與tanx是奇函數(shù),cosx是偶函數(shù)它們都不是周期函數(shù)都是周期函數(shù)雙曲函數(shù)也有和差公式:⑵、反雙曲函數(shù):雙曲函數(shù)的反函數(shù)稱為反雙曲函數(shù).a):反雙曲正弦函數(shù) 其定義域為:(∞,+∞);b):反雙曲余弦函數(shù) 其定義域為:[1,+∞);c):反雙曲正切函數(shù) 其定義域為:(1,+1);數(shù)列的極限我們先來回憶一下初等數(shù)學中學習的數(shù)列的概念。 ⑴、數(shù)列:若按照一定的法則,有第一個數(shù)a1,第二個數(shù)a2,…,依次排列下去,使得任何一個正整數(shù)n對應著一個確定的數(shù)an,那末,我們稱這列有次序的數(shù)a1,a2,…,an,…。第n項an叫做數(shù)列的一般項或通項.注:我們也可以把數(shù)列an看作自變量為正整數(shù)n的函數(shù),即:an=,它的定義域是全體正整數(shù) ⑵、極限:極限的概念是求實際問題的精確解答而產(chǎn)生的。例:我們可通過作圓的內(nèi)接正多邊形,近似求出圓的面積。設有一圓,首先作圓內(nèi)接正六邊形,把它的面積記為A1;再作圓的內(nèi)接正十二邊形,其面積記為A2;再作圓的內(nèi)接正二十四邊形,其面積記為A3;依次循下去(一般把內(nèi)接正62n1邊形的面積記為An)可得一系列內(nèi)接正多邊形的面積:A1,A2,A3,…,An,…,它們就構成一列有序數(shù)列。我們可以發(fā)現(xiàn),當內(nèi)接正多邊形的邊數(shù)無限增加時,An也無限接近某一確定的數(shù)值(圓的面積),這個確定的數(shù)值在數(shù)學上被稱為數(shù)列A1,A2,A3,…,An,… 當n→∞(讀作n趨近于無窮大)的極限。注:上面這個例子就是我國古代數(shù)學家劉徽(公元三世紀)的割圓術。 ⑶、數(shù)列的極限:一般地,對于數(shù)列來說,若存在任意給定的正數(shù)ε(不論其多么小),總存在正整數(shù)N,使得對于n>N時的一切不等式都成立,那末就稱常數(shù)a是數(shù)列的極限,或者稱數(shù)列收斂于a .記作:或注:此定義中的正數(shù)ε只有任意給定,不等式才能表達出與a無限接近的意思。且定義中的正整數(shù)N與任意給定的正數(shù)ε是有關的,它是隨著ε的給定而選定的。⑷、數(shù)列的極限的幾何解釋:在此我們可能不易理解這個概念,下面我們再給出它的一個幾何解釋,以使我們能理解它。數(shù)列極限為a的一個幾何解釋:將常數(shù)a及數(shù)列在數(shù)軸上用它們的對應點表示出來,再在數(shù)軸上作點a的ε鄰域即開區(qū)間(aε,a+ε),如下圖所示: 因不等式與不等式等價,故當n>N時,所有的點都落在開區(qū)間(aε,a+ε)內(nèi),而只有有限個(至多只有N個)在此區(qū)間以外。注:至于如何求數(shù)列的極限,我們在以后會學習到,這里我們不作討論。 ⑸、數(shù)列的有界性:對于數(shù)列,若存在著正數(shù)M,使得一切都滿足不等式││≤M,則稱數(shù)列是有界的,若正數(shù)M不存在,則可說數(shù)列是無界的。定理:若數(shù)列收斂,那末數(shù)列一定有界。注:有界的數(shù)列不一定收斂,即:數(shù)列有界是數(shù)列收斂的必要條件,但不是充分條件。例:數(shù)列 1,1,1,1,…,(1)n+1,… 是有界的,但它是發(fā)散的。函數(shù)的極限前面我們學習了數(shù)列的極限,已經(jīng)知道數(shù)列可看作一類特殊的函數(shù),即自變量取 1→∞內(nèi)的正整數(shù),若自變量不再限于正整數(shù)的順序,而是連續(xù)變化的,就成了函數(shù)。下面我們來學習函數(shù)的極限.函數(shù)的極值有兩種情況:a):自變量無限增大;b):自變量無限接近某一定點x0,如果在這時,函數(shù)值無限接近于某一常數(shù)A,就叫做函數(shù)存在極值。我們已知道函數(shù)的極值的情況,那么函數(shù)的極限如何呢 ?下面我們結合著數(shù)列的極限來學習一下函數(shù)極限的概念!⑴、函數(shù)的極限(分兩種情況)a):自變量趨向無窮大時函數(shù)的極限定義:設函數(shù),若對于任意給定的正數(shù)ε(不論其多么小),總存在著正數(shù)X,使得對于適合不等式 的一切x,所對應的函數(shù)值都滿足不等式 那末常數(shù)A就叫做函數(shù)當x→∞時的極限,記作:下面我們用表格把函數(shù)的極限與數(shù)列的極限對比一下:數(shù)列的極限的定義函數(shù)的極限的定義存在數(shù)列與常數(shù)A,任給一正數(shù)ε>0,總可找到一正整數(shù)N,對于n>N的所有都滿足<ε則稱數(shù)列,當x→∞時收斂于A記:。存在函數(shù)與常數(shù)A,任給一正數(shù)ε>0,總可找到一正數(shù)X,對于適合的一切x,都滿足,函數(shù)當x→∞時的極限為A,記:。從上表我們發(fā)現(xiàn)了什么 ??試思考之b):自變量趨向有限值時函數(shù)的極限。我們先來看一個例子.例:函數(shù),當x→1時函數(shù)值的變化趨勢如何?函數(shù)在x=,在數(shù)軸上任何一個有限的范圍內(nèi),都有無窮多個點,為此我們把x→1時函數(shù)值的變化趨勢用表列出,如下圖:從中我們可以看出x→1時,→,:只要與2只差一個微量ε,就一定可以找到一個δ,當<δ時滿足<δ定義:設函數(shù)在某點x0的某個去心鄰域內(nèi)有定義,且存在數(shù)A,如果對任意給定的ε(不論其多么小),總存在正數(shù)δ,當0<<δ時,<ε則稱函數(shù)當x→x0時存在極限,且極限為A,記:。注:在定義中為什么是在去心鄰域內(nèi)呢?這是因為我們只討論x→x0的過程,與x=x0出的情況無關。此定義的核心問題是:對給出的ε,是否存在正數(shù)δ,使其在去心鄰域內(nèi)的x均滿足不等式。有些時候,我們要用此極限的定義來證明函數(shù)的極限為 A,其證明方法是怎樣的呢? a):先任取ε>0; b):寫出不等式<ε;c):解不等式能否得出去心鄰域0<<δ,若能; d):則對于任給的ε>0,總能找出δ,當0<<δ時,<ε成立,因此函數(shù)極限的運
點擊復制文檔內(nèi)容
數(shù)學相關推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1