【總結(jié)】第四章相似矩陣課程教案授課題目:第一節(jié)特征值與特征向量教學(xué)目的:掌握方陣的特征值和特征向量的概念和求法.教學(xué)重點(diǎn):掌握方陣的特征值和特征向量的求法.教學(xué)難點(diǎn):方陣特征向量的求法.課時(shí)安排:3學(xué)時(shí).授課方式:多媒體與板書結(jié)合.教學(xué)基本內(nèi)容:§特征值與特征向量1定義1?設(shè)是階方陣,如果存在數(shù)和維非零列向量,使得
2025-06-16 17:05
【總結(jié)】Ch8矩陣特征值問題計(jì)算引言1110102()()31140.定理設(shè)為的特征值且,其中,則()為的特征值(為常數(shù));()為的特征值,即;()為的特征值;()設(shè)為非奇異矩陣,那么且為的特征值,即nnkkARAxxxccAccpApIApIx
2025-01-19 08:18
【總結(jié)】第六章統(tǒng)計(jì)特征值?統(tǒng)計(jì)特征值:指對統(tǒng)計(jì)調(diào)查的原始資料進(jìn)行整理后得到的可以精確描述統(tǒng)計(jì)數(shù)據(jù)分布的、具有代表性的數(shù)量特征。?具體有統(tǒng)計(jì)平均數(shù)、描述數(shù)據(jù)離散程度的指標(biāo)標(biāo)志變動度和描述分布形狀的指標(biāo)偏態(tài)和峰態(tài),然后介紹成數(shù)和常見的概率分布的特征值。第一節(jié)統(tǒng)計(jì)平均數(shù)特點(diǎn)-數(shù)量抽象性-反映集中
2025-05-03 01:51
【總結(jié)】樁基板塊有同志在問這些關(guān)系,大家都來討論一下。現(xiàn)轉(zhuǎn)載一段greatcloud在ld上面轉(zhuǎn)載的分析:一、原因與鋼、混凝土、砌體等材料相比,土屬于大變形材料,當(dāng)荷載增加時(shí),隨著地基變形的相應(yīng)增長,地基承載力也在逐漸加在,很難界定出下一個(gè)真正的“極限值”,而根據(jù)現(xiàn)有的理論及經(jīng)驗(yàn)的承載力計(jì)算公式,可以得出不同的值。因此,地基極限承載力的確定,實(shí)際上沒
2025-01-16 20:16
【總結(jié)】淮陰師范學(xué)院畢業(yè)論文(設(shè)計(jì))淺談矩陣特征值的應(yīng)用摘要:矩陣特征值在很多領(lǐng)域都有廣泛應(yīng)用,本文主要研究了其中兩方面的應(yīng)用:第一是通過數(shù)列通項(xiàng)和常染色體遺傳問題建模研究特征值在建模中的應(yīng)用,第二是通過特征值在一階線性微分方程組的求解問題研究特征值在微分方程中應(yīng)用.關(guān)鍵字:數(shù)列,特征值,特征向量,特征多項(xiàng)式.
2025-06-25 16:07
【總結(jié)】?,3,2,1?k第7章矩陣特征值問題2112122122212122221222212nnnnnwwwwwwwwwwHwwwww??????????????????nTnTWRWwwwWH
2024-10-16 21:19
【總結(jié)】1第七章求矩陣特征值的數(shù)值方法2定義1設(shè),)(nnijaA??如果AAT?,則稱A為對稱矩陣。定義2設(shè)nnijRaA???)(是對稱矩陣,且對,0nxRx???,都有,10nTijijijxAxaxx????,則稱
2025-05-10 05:49
【總結(jié)】1可換矩陣的公共特征向量研究摘要:本文將考慮當(dāng)滿足BA,都是n階方陣,BAAB?時(shí),如何求BA,的公共特征向量,而且得到BA,所有公共特征向量的求法及相關(guān)研究.關(guān)鍵詞:可換矩陣;特征向量;對角矩陣.Themutativematrixspubliccharacteristic
2024-08-20 20:42
【總結(jié)】數(shù)值分析課程設(shè)計(jì)QR方法求矩陣全部特征值問題復(fù)述用算法求矩陣特征值:(i)(ii)要求:(1)根據(jù)算法原理編制求(i)與(ii)中矩陣全部特征值的程序并輸出計(jì)算結(jié)果(要求誤差)(2)直接用現(xiàn)有的數(shù)學(xué)軟件求(i),(ii)的全部特征值,并與(1)的結(jié)果比較。問題分析
2024-08-30 13:00
【總結(jié)】第9章矩陣特征值問題的數(shù)值方法特征值與特征向量Hermite矩陣特征值問題Jacobi方法對分法乘冪法反冪法QR方法特征值與特征向量設(shè)A是n階矩陣,x是非零列向量.如果有數(shù)λ存在,滿足,(1)那么,稱
2025-07-20 12:59
【總結(jié)】提供完整版的各專業(yè)畢業(yè)設(shè)計(jì),存檔編號贛南師范學(xué)院學(xué)士學(xué)位論文矩陣特征值的求法研究教學(xué)學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院屆別2021屆專
2025-06-01 21:19
【總結(jié)】存檔編號贛南師范學(xué)院學(xué)士學(xué)位論文矩陣特征值的求法研究教學(xué)學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院屆別2020屆專業(yè)數(shù)學(xué)與應(yīng)用數(shù)學(xué)
2024-10-07 21:31
【總結(jié)】巢湖學(xué)院2013屆本科畢業(yè)論文(設(shè)計(jì))高階對稱矩陣特征值的計(jì)算畢業(yè)論文目錄摘要 IAbstract II目錄 1引言 11關(guān)于矩陣特征值的概念 1矩陣特征值和特征向量的定義 1 2 32高階對稱矩陣特征值的計(jì)算方法 4 4 4 7 7 9QR方法 11 11 12 14 143結(jié)束語 17參考文
2025-06-18 13:59
【總結(jié)】1非線性方程求根特征值問題及應(yīng)用動物養(yǎng)殖問題第四章線性代數(shù)2例1求解3次方程x3+1=0。求多項(xiàng)式根(零點(diǎn))方法:R=roots(P)其中,P=[a1,a2,···,an+1]表示n次多項(xiàng)式系數(shù)P(x)=a1xn+a2xn-1+
2024-10-17 09:46
【總結(jié)】數(shù)值分析 2015/11/10準(zhǔn)備工作?算法設(shè)計(jì)矩陣特征值的求法有冪法、Jacobi法、QR法等,其中冪法可求得矩陣按模最大的特征值(反冪法可求得按模最小特征值),Jacobi法則可以求得對稱陣的所有特征值。分析一:由題目中所給條件λ1≤λ2≤…≤λn,可得出λ1、λn按模并不一定嚴(yán)格小于或大于其他特征值,且即使按模嚴(yán)格小于或大于其他特征值,也極有可能出現(xiàn)|
2024-08-14 03:44