【總結(jié)】返回后頁前頁顯然,按定義計算定積分非常困難,§2牛頓-萊布尼茨公式須尋找新的途徑計算定積分.在本節(jié)中,介紹牛頓-萊布尼茨公式,從而建立了定積分與不定積分之間的聯(lián)系,大大簡化了定積分的計算.返回返回后頁前頁若質(zhì)點以速度v=v(t)作變速直線運動,由定積分(
2025-08-20 09:07
【總結(jié)】高數(shù)課件重慶大學(xué)數(shù)理學(xué)院教師吳新生第八章多元函數(shù)微分法及其應(yīng)用開始退出第一節(jié)多元函數(shù)的基本概念返回第二節(jié)偏導(dǎo)數(shù)第四節(jié)多元復(fù)合函數(shù)的求導(dǎo)法則第五節(jié)隱函數(shù)的求導(dǎo)公式第六節(jié)微分法在幾何
2024-10-05 01:41
【總結(jié)】1§?一、多元函數(shù)的極值與最值?二、條件極值?三、最小二乘法*2二元函數(shù)極值的定義?設(shè)函數(shù)z=f(x,y)在點(x0,y0)的某鄰域內(nèi)有定義,對于該鄰域內(nèi)異于(x0,y0)的點(x,y):若滿足不等式f(x,y)f(x0,y0),則稱函數(shù)在(x0,y0)有極大值;若滿足不等式f(x,y)
2025-01-08 13:30
【總結(jié)】返回后頁前頁返回后頁前頁§5微積分學(xué)基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學(xué)基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎(chǔ)上又可導(dǎo)出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項二、換元積分法與分部積分法返回返回后頁前頁返回后頁前頁
2025-08-20 09:08
【總結(jié)】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結(jié)】2021/11/101P128習(xí)題5(1)(3).6(2)(3).作業(yè)復(fù)習(xí)P97—114預(yù)習(xí)P115—1282021/11/102一、冪級數(shù)的簡單應(yīng)用第十四講冪級數(shù)的應(yīng)用、傅里葉級數(shù)二、傅立葉級數(shù)2021/11/103一、冪級數(shù)的簡單應(yīng)用﹡函數(shù)
2024-10-16 17:33
【總結(jié)】第五部分多元函數(shù)微分學(xué)第1頁共27頁1第五部分多元函數(shù)微分學(xué)[選擇題]容易題1—36,中等題37—87,難題88—99。1.設(shè)有直線???????????031020123:zyxzyxL及平面0224:????zyx?,則直線L()(A)平行于?。(B)
2025-01-08 22:26
【總結(jié)】2在微分學(xué)中:1)(??????xx211)(arctanxx???反過來:x???11)(cx??)1ln(x5sec)(2??cx?5tan51復(fù)雜,怎樣求?問題:如果右端函數(shù)較?tan2x??)(如3例??xxcossin??sin是
2025-05-15 23:58
【總結(jié)】《高等數(shù)學(xué)(微積分)》復(fù)習(xí)題A一、填空題1、函數(shù)的定義域是 2、設(shè),則_____________3、若y=x(x–1)(x–2)(x–3),則(0)= 4、函數(shù)的駐點是 5、若存在且連續(xù),則二、選擇題1、下列函數(shù)中,有界的是()。
2025-06-08 00:27
【總結(jié)】12022年浙江省高等數(shù)學(xué)(微積分)競賽試題及解答一.計算題1.求??1lim2xxxex??????????.解法一令1tx?,原式011lim2ttett??????????????????0211limtttet
2025-01-08 21:44
【總結(jié)】第十一章流類庫與輸入/輸出清華大學(xué)鄭莉C++語言程序設(shè)計C++語言程序設(shè)計清華大學(xué)鄭莉2本章主要內(nèi)容?I/O流的概念?輸出流?輸入流?輸入/輸出流C++語言程序設(shè)計清華大學(xué)鄭莉3I/O流的概念?當(dāng)程序與外界環(huán)境進行信息交換時,存在著兩個對象,一
2024-10-18 17:14
【總結(jié)】1導(dǎo)數(shù)的概念第三章導(dǎo)數(shù)與微分求導(dǎo)法則基本導(dǎo)數(shù)公式與高階導(dǎo)數(shù)函數(shù)的微分導(dǎo)數(shù)在經(jīng)濟學(xué)中的簡單應(yīng)用22.高階導(dǎo)數(shù)基本導(dǎo)數(shù)公式與高階導(dǎo)數(shù)1.基本導(dǎo)數(shù)公式2/5/20223(1).()C??0(2).()x?
【總結(jié)】一、函數(shù)的泰勒級數(shù)二、冪級數(shù)及其收斂性三、冪級數(shù)的運算四、小結(jié)思考題第四節(jié)泰勒級數(shù)與冪級數(shù)(1)一、函數(shù)的泰勒級數(shù)xxfcos)(?在00?x處的各階泰勒多項式為1)(cos0??xPx1.xxfcos)(?在00?x處的泰勒級數(shù).!2221)(cosxxPx
2025-08-11 16:41
【總結(jié)】1.函數(shù)與基本不等式函數(shù)關(guān)系,定義域與值域,反函數(shù)與復(fù)合函數(shù)四類初等性質(zhì)(廣義奇偶性)極限定義與性質(zhì)序列與函數(shù)極限定義與等價描述極限性質(zhì):唯一性,有界性,保號性及推論,比較性質(zhì)三個極限存在準(zhǔn)則兩個標(biāo)準(zhǔn)極限無窮小量比階等價無窮小量,同階無窮小量與高階無窮小量。極限相關(guān)知識點導(dǎo)數(shù)概念,變限積分,級數(shù),微分方程,廣義積分等。連續(xù)函
2025-06-17 21:42
【總結(jié)】1帶余除法與整除性;最大公因子,輾轉(zhuǎn)相除法第二講2§1-2帶余除法與整除性唯一決定。,由和且或,,使,,則總存在)(,若,:(帶余除法)對定理gfrqrgrrgqfXFrqXgXFgf0degdeg][0][1????????點的值。在稱為則)設(shè):定義cX
2025-07-25 11:56