【總結(jié)】第一節(jié)定積分的概念一、引入定積分概念的實(shí)例二、定積分的概念三、定積分的存在定理四、定積分的基本性質(zhì)一、引入定積分概念的實(shí)例引例1曲邊梯形的面積曲邊梯形設(shè)函數(shù)f(x)在區(qū)間[a,b](ab)上非負(fù)且連續(xù),由曲線y=f(x),直線x=a,x=b及x軸圍成的圖形稱為曲邊梯形,其中曲線弧y=f(x
2025-07-20 15:04
【總結(jié)】定積分的概念問題提出動的路程,都可以通過“四步曲”解決,這四個(gè)步驟是什么?其中哪個(gè)步驟是難點(diǎn)?分割→近似代替→求和→取極限.運(yùn)動的路程是兩類不同的問題,但它們有共同的解決途徑,我們可以此為基點(diǎn),構(gòu)建一個(gè)新的數(shù)學(xué)理論,使得這些問題歸結(jié)為某個(gè)數(shù)學(xué)問題來解決,并應(yīng)用于更多的研究領(lǐng)域
2024-11-17 19:50
【總結(jié)】實(shí)驗(yàn)二定積分的近似計(jì)算數(shù)學(xué)實(shí)驗(yàn)1l定積分計(jì)算的基本公式是牛頓-萊布尼茲公式。但當(dāng)被積函數(shù)的原函數(shù)不知道時(shí),如何計(jì)算?這時(shí)就需要利用近似計(jì)算。特別是在許多實(shí)際應(yīng)用中,被積函數(shù)甚至沒有解析表達(dá)式,而是一條實(shí)驗(yàn)記錄曲線,或一組離散的采樣值,此時(shí)只能用近似方法計(jì)算定積分。l本實(shí)驗(yàn)主要研究定積分的三種近似計(jì)算算法:矩形法、梯形法和拋物線法。同時(shí)介紹
2025-04-29 00:12
【總結(jié)】對定積分的補(bǔ)充規(guī)定:(1)當(dāng)ba?時(shí),0)(??badxxf;(2)當(dāng)ba?時(shí),????abbadxxfdxxf)()(.說明在下面的性質(zhì)中,假定定積分都存在,且不考慮積分上下限的大小.一、基本內(nèi)容證??badxxgxf)]()([iiinixgf???
2025-01-14 14:49
【總結(jié)】第五章定積分及其應(yīng)用本章主題詞:曲邊梯形的面積、定積分、變上限的積分、牛頓-萊布尼茨公式、換元積分法、分部積分法、廣義積分。數(shù)學(xué)不僅在摧毀著物理科學(xué)中緊鎖的大門,而且正在侵入并搖撼著生物科學(xué)、心理學(xué)和社會科學(xué)。會有這樣一天,經(jīng)濟(jì)的爭執(zhí)能夠用數(shù)學(xué)以一種沒有爭吵的方式來解決,現(xiàn)在想象這一天的到來不再是謊繆的了。
2025-04-28 23:28
【總結(jié)】1第四節(jié)定積分的換元積分法和分部積分法一、定積分的換元積分法定理則有2證3注意:(1)應(yīng)用定積分的換元法時(shí),與不定積分比較,多一事:換上下限;少一事:不必回代;(2)(3)逆用上述公式,即為“湊微分法”,不必?fù)Q限.4例1例2例35例4計(jì)算解原式6例5計(jì)算
2025-04-28 23:57
【總結(jié)】定積分的物理應(yīng)用復(fù)習(xí)微元法一、非均勻細(xì)桿的質(zhì)量二、變力沿直線所作的功三、液體的側(cè)壓力四、引力問題微元法的步驟和關(guān)鍵:復(fù)習(xí)微元法(定積分概念的一個(gè)簡化)非均勻分布在區(qū)間[a,b]上的所求總量A分割成分布在各子區(qū)間的局部量,........A必須對區(qū)間[a,b]具有可加
2025-04-29 00:55
【總結(jié)】第六章定積分應(yīng)用習(xí)題課一、定積分應(yīng)用的類型1.幾何應(yīng)用?????平面圖形的面積特殊立體的體積平面曲線弧長???旋轉(zhuǎn)體的體積平行截面面積為已知立體的體積2.物理應(yīng)用?????變力作功水壓力引力二、構(gòu)造微元的基本思想及解題步驟1.構(gòu)造微元的基本思想
2025-01-20 00:54
【總結(jié)】定積分的換元法上一節(jié)我們建立了積分學(xué)兩類基本問題之間的聯(lián)系——微積分基本公式,利用這個(gè)公式計(jì)算定積分的關(guān)鍵是求出不定積分,而換元法和分部積分法是求不定積分的兩種基本方法,如果能把這兩種方法直接應(yīng)用到定積分的計(jì)算,相信定能使得定積分的計(jì)算簡化,下面我們就來建立定積分的換元積分公式和分部積分公式。先來看一個(gè)例子例1換元求不定積分令則
2025-04-29 00:13
【總結(jié)】.⌒弧長⌒⌒oxyxyo作業(yè)習(xí)題九(P199)1(2)(3)(6);2。
2025-04-28 23:18
【總結(jié)】定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.
2025-01-14 14:36
【總結(jié)】定積分的分部積分公式推導(dǎo)一、分部積分公式例1◆定積分的分部積分法解解原式原式已積出的部分要求值定積分的分部積分法已積出的部分要求值解解原式原式解解原式原式所以所以分部積分過程:解(4)
2025-04-29 00:02
【總結(jié)】(AdvancedMathematics)?CSMyzx0?P定積分的應(yīng)用習(xí)題課(三)第三章一元函數(shù)積分學(xué)及應(yīng)用l平面圖形的面積l體積l弧長定積分的應(yīng)用一復(fù)習(xí)定積分的應(yīng)用定積分的應(yīng)用1、定積分應(yīng)用的常用公式(1)平面圖形的面積直角坐標(biāo)情形返回定積分的應(yīng)用若
2025-04-29 00:14
【總結(jié)】一、變速直線運(yùn)動中位置函數(shù)與速度函數(shù)之間的聯(lián)系第二節(jié)第二節(jié)微積分基本定理微積分基本定理積分的基本原理:微積分基本定理,由艾薩克·牛頓和戈特弗里德·威廉·萊布尼茨在十七世紀(jì)分別獨(dú)自確立。微積分基本定理將微分和積分聯(lián)系在一起,這樣,通過找出一個(gè)函數(shù)的原函數(shù),就可以方便地計(jì)算它在一個(gè)區(qū)間上的積分。積分和導(dǎo)數(shù)已
2025-04-29 00:05
【總結(jié)】知識精要基礎(chǔ)訓(xùn)練典例示范誤區(qū)警示方法歸納考點(diǎn)測評例題備選§定積分題型一題型二題型三題型一題型二題型三題型一題型二題型三題型一題型二題型三題型一題型二題型三題型一題
2024-12-08 04:04