【總結(jié)】1、平面向量的坐標表示與平面向量分解定理的關(guān)系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2025-11-02 21:09
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習強化雙基系列課件26《平面向量的坐標表示與運算》?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析平面向量的坐標表示要點·疑點·考點
2025-11-01 00:27
【總結(jié)】第二節(jié)平面向量的基本定理及坐標表示基礎(chǔ)梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個的向量,那么對于這一平面內(nèi)的任意向量a,一對實數(shù)λ1,λ2,使a=.其中
2025-11-03 16:44
【總結(jié)】b?b?a?a?圖①圖②平面向量數(shù)量積的物理背景及其含義導(dǎo)學(xué)案姓名:班級:【目標展示】1、掌握平面向量數(shù)量積的含義及其幾何意義2、體會平面向量的數(shù)量積與向量投影的關(guān)系3、掌握平面向量數(shù)量積
2025-11-14 12:33
【總結(jié)】第一篇:平面向量的數(shù)量積及其應(yīng)用教學(xué)設(shè)計說明 平面向量的數(shù)量積及其應(yīng)用設(shè)計立意及思路 平面向量在教材中獨立成章,它既反映了現(xiàn)實世界的數(shù)量關(guān)系,又體現(xiàn)了幾何圖形的位置關(guān)系,具有代數(shù)形式和幾何形式的“...
2025-11-06 04:13
【總結(jié)】第25-26課時教學(xué)題目:平面向量的坐標表示及其運算習題課教學(xué)目標:1、掌握平面向量的坐標表示;2、會進行向量線性運算的坐標表示;3、掌握向量共線的充要條件.教學(xué)內(nèi)容:1、平面向量的坐標表示;2、向量線性運算的坐標表示;3、向量共線的充要條件.教學(xué)重點:1、向量線性運算的坐標表示;2、向量共線的充要條件.教學(xué)難點:1、向量線性運算的坐
2025-03-25 01:22
【總結(jié)】§平面向量的坐標運算(二)知識回顧平面向量的坐標表示分別與x軸、y軸方向相同的兩單位向量i、j作為基底,任一向量a,有且只有一對實數(shù)x、y,使得Oxyijaa=xi+yj=(x,y)1.設(shè)則
2025-10-31 06:28
【總結(jié)】第2節(jié)平面向量基本定理及其坐標表示(對應(yīng)學(xué)生用書第61~62頁)1.向量的夾角(1)定義:已知兩個非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時,夾角θ
2025-11-03 01:35
【總結(jié)】第3講平面向量的數(shù)量積A級基礎(chǔ)演練(時間:30分鐘滿分:55分)一、選擇題(每小題5分,共20分)1.若向量a=(3,m),b=(2,-1),a·b=0,則實數(shù)m的值為().A.-32C.2D.6解析由a·b=3
2025-11-29 08:09
【總結(jié)】××××中學(xué)教學(xué)設(shè)計方案年月日星期第節(jié)課題平面向量的坐標運算章節(jié)第五章第二節(jié)教學(xué)目的知識目標1.了解平面向量的基本定理,理解平面向量的坐標的概念,會用坐標形式進行向量
2025-08-04 16:11
【總結(jié)】?1.平面向量共線的坐標表示?設(shè)a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2025-08-05 18:26
【總結(jié)】復(fù)習:向量數(shù)量積的定義是什么?如何求向量夾角?向量的運算律有哪些?平面向量的數(shù)量積有那些性質(zhì)?答:babababa????????cos,cos運算律有:)()().(2bababa????????abba???.1cbcacba?????
2025-11-01 08:36
【總結(jié)】第2講平面向量的基本定理及坐標表示?不同尋常的一本書,不可不讀喲!?1.了解平面向量基本定理及其意義.?2.掌握平面向量的正交分解及坐標表示.?3.會用坐標表示平面向量的加法、減法與數(shù)乘運算.?4.理解用坐標表示的平面向量共線的條件.?1個重要區(qū)別?向量的坐標與點的坐標不同,向量平移后,其起點
2025-11-08 20:14
【總結(jié)】平面向量的正交分解及坐標表示的教學(xué)案例一.案例要解決的教學(xué)困惑:在高中數(shù)學(xué)教材中,很多知識,如果學(xué)生記住結(jié)論,學(xué)生就能解決一系列的數(shù)學(xué)題目。對于這類知識的教學(xué)一直困擾我很久。到底是簡單地讓學(xué)生記住一個公式,一個結(jié)論,或是純粹地模仿技能,還是要讓學(xué)生通過不斷的思考、探究、實踐,摸索總結(jié)出公式和結(jié)論呢?新的《普通數(shù)學(xué)課程標準》指出:“學(xué)生的數(shù)學(xué)學(xué)習活動不應(yīng)只限于對概念、結(jié)論和技能的記憶、模
2025-04-17 01:00
【總結(jié)】平面向量數(shù)量積的坐標表示一、教材分析1.本課的地位及作用:平面向量數(shù)量積的坐標表示,就是運用坐標這一量化工具表達向量的數(shù)量積運算,為研究平面中的距離、垂直、角度等問題提供了全新的手段。它把向量的數(shù)量積與坐標運算兩個知識點緊密聯(lián)系起來,是全章重點之一。:在此之前學(xué)生已學(xué)習了平面向量的坐標表示和平面向量數(shù)量積概念及運算,但數(shù)量積是用長度和夾角這兩個概念
2025-11-26 06:37