【正文】
池州學(xué)院 本科 畢業(yè)論文 (設(shè)計(jì)) 1 本科畢業(yè)論文(設(shè)計(jì)) ( 20xx 屆 ) 題 目: 一類函數(shù)方程的解法研究 系 (部): 數(shù)學(xué)與計(jì)算機(jī)科學(xué)系 專 業(yè): 數(shù)學(xué)與應(yīng)用數(shù)學(xué) 學(xué)生姓名: 學(xué)號(hào): 100311139 指導(dǎo)教師: 職稱(學(xué)位): 合作導(dǎo)師: 職稱(學(xué)位): 完成時(shí)間: 201 年 月 日 池州學(xué)院教務(wù)處制 池州學(xué)院 本科 畢業(yè)論文 (設(shè)計(jì)) 2 學(xué)位論文原創(chuàng)性聲明 本人所 提 交 的學(xué)位論文,是在指導(dǎo)老師指導(dǎo)下獨(dú)立完成的研究成果。本人在論文寫作中參考的其他個(gè)人或集體的研究成果,均在文中以明確方式標(biāo)明。本人依法享有和承擔(dān)由此論文而產(chǎn)生的權(quán)利和責(zé)任。 聲明人(簽名): 20xx 年 1 月 15 池州學(xué)院 本科 畢業(yè)論文 (設(shè)計(jì)) 3 池州學(xué)院本科畢業(yè)論文 (設(shè)計(jì) )正文 目 錄 摘 要 、 ...................................................................................................................................... 4 Abstract ........................................................................................................................................ 5 前言 ............................................................................................................................................. 6 2 一類函數(shù)方程的解法 ............................................................................................................... 7 待定系數(shù)法 ..................................................................................................................... 7 ............................................................................................................................. 9 換元法 ...........................................................................................................................11 數(shù)學(xué)歸納法 ................................................................................................................... 12 解方程組法 ................................................................................................................... 14 反證法 .......................................................................................................................... 15 不動(dòng)點(diǎn)法 ...................................................................................................................... 16 柯西法 .......................................................................................................................... 17 解微分方程法 ............................................................................................................... 18 參數(shù)法 .......................................................................................................................... 20 賦值法 .......................................................................................................................... 20 構(gòu)造法 .......................................................................................................................... 22 定義法 .......................................................................................................................... 23 函數(shù)迭代法 ................................................................................................................... 24 數(shù)列法 .......................................................................................................................... 25 3結(jié)束語(yǔ) ................................................................................................................................... 1 4 謝辭 ....................................................................................................................................... 2 參考文獻(xiàn) .................................................................................................................................. 3 池州學(xué)院 本科 畢業(yè)論文 (設(shè)計(jì)) 4 摘 要 、 兩百多 年之前,函數(shù)方程的解法和研究便已登堂入世,然其在數(shù)學(xué)分析中解法負(fù)責(zé)、形式千變?nèi)f化、一般性極大,以至于今,知其解法者卻也是少之又少,且函數(shù)方程的解得存在性和唯一性道目下依然也是一個(gè)未解之謎,不僅如此,同樣還有若干函數(shù)方程直到現(xiàn)在還沒有解出來(lái)。 在研究“曲面論”問(wèn)題的基礎(chǔ)上,必須去解讀一些函數(shù)方程,于此法國(guó)著名數(shù)學(xué)家蒙日便于 1773 年運(yùn)用智慧將這些函數(shù)方程化為“有限差方程”進(jìn)行處理,同年在數(shù)學(xué)界另一位數(shù)學(xué)家拉普拉斯便利用蒙日的方法并將之推廣到相當(dāng)廣泛的一類函數(shù)方程上面去。 函數(shù)方程: ? ? )()(2)( yfxfyxfyxf ???? 也在 1721 年被數(shù)學(xué)柯西求出。 其通解(此方程是達(dá)朗貝爾于 1769 年論證力的合成法則時(shí)導(dǎo)出的)這種方法被后人稱為柯西方法。 關(guān)鍵詞 :函數(shù)方程;賦值法;數(shù)學(xué)歸納法;柯西法;解法 池州學(xué)院 本科 畢業(yè)論文 (設(shè)計(jì)) 5 Abstract Key Words: At the time of more than two hundred years before, had appeared function equation solution and research. In the mathematical analysis method, various forms, general, so greatly that by now, you know the solution to few and far between, and the function equation of the existence and uniqueness to remains a mystery until now, not only that, there are a number of functional equations until there is no solution. Because in the research on the basis of the theory of surface problem, must go to the solution of some functional equations, the French mathematician monge use wisdom in 1773 put the function equation into the finite difference equation to deal with。 In the same year, another mathematician of Laplace the monge method is extended to a large variety of the function equation of the above. Functional equations: ? ? )()(2)( yfxfyxfyxf ???? cauchy and also in 1721 by mathematics. Its general solution (the equation is d’ Alembert demonstrated in 1769 when the force resultants