【總結(jié)】1.3.3最大值與最小值【學習要求】1.理解函數(shù)最值的概念,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會用導數(shù)求某定義域上函數(shù)的最值.【學法指導】弄清極值與最值的區(qū)別是學好本節(jié)的關鍵.函數(shù)的最值是一個整體性的概念.函數(shù)極值是在局部上對函數(shù)值的比較,具有相對性;而函數(shù)的最值則是表示函數(shù)在整個定義域上的情況,是對
2024-11-17 23:19
【總結(jié)】本課時欄目開關填一填研一研練一練1.3.1單調(diào)性【學習要求】1.結(jié)合實例,直觀探索并掌握函數(shù)的單調(diào)性與導數(shù)的關系.2.能利用導數(shù)研究函數(shù)的單調(diào)性,并能夠利用單調(diào)性證明一些簡單的不等式.3.會求函數(shù)的單調(diào)區(qū)間(其中多項式函數(shù)一般不超過三次).【學法指導】結(jié)合
2024-11-18 08:08
【總結(jié)】本課時欄目開關填一填研一研練一練1.1.1平均變化率【學習要求】1.理解并掌握平均變化率的概念.2.會求函數(shù)在指定區(qū)間上的平均變化率.3.能利用平均變化率解決或說明生活中的實際問題.【學法指導】平均變化率可以刻畫函數(shù)值在某個范圍內(nèi)變化的快慢程度,理解
2024-11-17 23:13
【總結(jié)】第三章導數(shù)及其應用第1課時平均變化率教學目標:,經(jīng)歷運用數(shù)學描述和刻畫現(xiàn)實世界的過程,體會數(shù)學的博大精深以及學習數(shù)學的意義;,為后續(xù)建立瞬時變化率和導數(shù)的數(shù)學模型提供豐富的背景.教學重點:平均變化率的實際意義與數(shù)學意義教學難點:對生活現(xiàn)象作出數(shù)學解釋教學過程:Ⅰ.問題
2024-11-19 20:37
【總結(jié)】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在研究函數(shù)在的應用(函數(shù)的極值)導學案(無答案)蘇教版選修1-1一:學習目標1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與其導數(shù)的關系,并會靈活應用;2.了解可導函數(shù)在某點取得極值的必要條件和充分條件(導數(shù)在極值點兩側(cè)異號)。二:課前預習1.函數(shù)a
2024-11-20 00:30
【總結(jié)】導數(shù)在研究函數(shù)中的應用一般地,設函數(shù)y=f(x)的定義域為A,區(qū)間IA.?如果對于區(qū)間I內(nèi)的任意兩個值x1、x2,當x1<x2時,都有f(x1)<f(x2),那么就說y=f(x)在區(qū)間I上是單調(diào)增函數(shù),I稱為y=f(x)的單調(diào)增區(qū)間.如果對于區(qū)間I內(nèi)的任意兩個值x1、x2
2024-11-18 08:56
【總結(jié)】導數(shù)在研究函數(shù)中的應用——極大值與極小值一般地,設函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導數(shù)與函數(shù)的單調(diào)性的關系知識回顧1)如果在某區(qū)間上,那么f(x)為該區(qū)間上的增函數(shù),?f(x)02)如果在某區(qū)間上
2024-11-17 23:31
【總結(jié)】1.1.2瞬時變化率——導數(shù)(二)【學習要求】1.理解函數(shù)的瞬時變化率——導數(shù)的準確定義和極限形式的意義,并掌握導數(shù)的幾何意義.2.理解導函數(shù)的概念,了解導數(shù)的物理意義和實際意義.【學法指導】導數(shù)就是瞬時變化率,理解導數(shù)概念可以結(jié)合曲線切線的斜率,結(jié)合瞬時速度,瞬時加速度;函數(shù)f(x)
2024-11-17 17:03
【總結(jié)】第1課時導數(shù)與函數(shù)的單調(diào)性..對于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,設函數(shù)f(x)的定義域為I:如果對于定義域I內(nèi)某個區(qū)間D上的
2024-11-19 23:17
【總結(jié)】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在實際生活中的應用導學案(無答案)蘇教版選修1-1一:學習目標1.學會把實際問題轉(zhuǎn)化為數(shù)學問題;2.最優(yōu)化問題的求解(利用導數(shù)求最值)。二:課前預習1.回憶求函數(shù)最值的步驟。60cm的鐵絲圍成矩形,長、寬各為多少時矩形的面積最大?
【總結(jié)】導數(shù)在函數(shù)的單調(diào)性、極值中的應用一、知識梳理1.函數(shù)的單調(diào)性與導數(shù)在區(qū)間(a,b)內(nèi),函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系:如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減;如果f_′(x)=0,那么 f(x)在這個區(qū)間內(nèi)為常數(shù).問題探究1:若函數(shù) f(x)在(a,b)內(nèi)
2025-08-04 07:33
【總結(jié)】本課時欄目開關畫一畫研一研章末復習課本課時欄目開關畫一畫研一研章末復習課本課時欄目開關畫一畫研一研題型一分類討論思想的應用例1設函數(shù)f(x)=2x3-3(a-1)x2+1,其中a
【總結(jié)】第三章導數(shù)及其應用第10課時函數(shù)的最大值與最小值教學目標:;和步驟.教學重點:利用導數(shù)求函數(shù)的最大值和最小值的方法教學難點:函數(shù)的最大值、最小值與函數(shù)的極大值和極小值的區(qū)別與聯(lián)系教學過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學:::
2024-11-19 17:30
【總結(jié)】第1課時導數(shù)與函數(shù)的單調(diào)性,直觀探索并掌握函數(shù)的單調(diào)性與導數(shù)的關系...對于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,
2024-11-19 23:14
【總結(jié)】§1函數(shù)的單調(diào)性與極值導數(shù)與函數(shù)的單調(diào)性課時目標掌握導數(shù)與函數(shù)單調(diào)性之間的關系,會利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.1.導函數(shù)的符號和函數(shù)的單調(diào)性的關系:如果在某個區(qū)間內(nèi),函數(shù)y=f(x)的導數(shù)________,則在這個區(qū)間上,函數(shù)y=f(x)是增加的;如果在某個區(qū)間
2024-12-05 01:55