【總結(jié)】基本不等式的證明課時目標;.1.如果a,b∈R,那么a2+b2____2ab(當且僅當______時取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當且僅當a____b時,等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術(shù)平均數(shù),
2024-12-05 10:13
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當且僅當a=b時,等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-08 20:20
【總結(jié)】 大家網(wǎng) 11/12高中數(shù)學不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應(yīng)用不等式的性質(zhì)和運算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當a1時,原
2025-06-07 23:55
【總結(jié)】溫故知新1、比較兩實數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2025-11-08 17:33
【總結(jié)】基本不等式的應(yīng)用課時目標;(小)值問題.1.設(shè)x,y為正實數(shù)(1)若x+y=s(和s為定值),則當______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當______時,和x+y有最____值,且這個值為______.2.利用
2024-12-05 10:12
【總結(jié)】第1章解三角形(B)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.在△ABC中,a=2,b=3,c=1,則最小角的大小為________.2.△ABC的三內(nèi)角A、B、C所對邊的長分別是a、b、c,設(shè)向量p=(a+c,b),q=(b-a,
2024-12-04 22:29
【總結(jié)】3.基本不等式的證明學習目標預(yù)習導(dǎo)學典例精析欄目鏈接情景導(dǎo)入如下圖所示,以線段a+b的長為直徑作圓,在直徑AB上取點C,使AC=a,CB=b,過點C作垂直于直徑AB的弦DD′,連接AD、DB,則DC能否用a,b表示,DD′與A
2025-11-08 19:03
【總結(jié)】2021/1/61高中數(shù)學復(fù)習課代數(shù)第五章不等式第一課時[知識要點]本章的知識要點包括:不等式、不等式的性質(zhì)、不等式的證明、不等式的解法、含有絕對值的不等式。這些知識點間和內(nèi)在
2024-11-30 12:27
【總結(jié)】菜單課后作業(yè)典例探究·提知能自主落實·固基礎(chǔ)高考體驗·明考情新課標·文科數(shù)學(安徽專用)第四節(jié)基本不等式菜單課
2025-01-06 16:33
【總結(jié)】基本不等式的應(yīng)用教學目標:一、知識與技能1.能利用基本不等式解決最值問題;2.會利用基本不等式解決與三角有關(guān)問題.二、過程與方法1.通過實例體會基本不等式在最值問題中的應(yīng)用;2.通過實例體會總結(jié)基本不等式在應(yīng)用中需要注意的問題.三、情感、態(tài)度與價值觀通過親歷解題的過程,
【總結(jié)】第一頁,編輯于星期六:點三十六分。,第一課時基本不等式,第二頁,編輯于星期六:點三十六分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十六分。,第四頁,編輯于星期六:點三十六分。,第...
2025-10-13 19:00
2025-10-13 19:01
【總結(jié)】不等式的性質(zhì)素材?一.復(fù)習?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)比較兩個實數(shù)的大小,(2)推導(dǎo)不等式的性質(zhì)
2025-11-09 12:09
【總結(jié)】第三章不等式課題:§不等式與不等關(guān)系第1課時授課類型:新授課【教學目標】1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學會依據(jù)具體問題的實際背景分析問題、解決問題的方法;3.情態(tài)與
2025-11-10 20:24