【總結(jié)】不等關(guān)系與不等式同步測(cè)試【基礎(chǔ)練習(xí)】1.一個(gè)工程隊(duì)規(guī)定要在6天內(nèi)完成300土方的工程,第一天完成了60土方,現(xiàn)在要比原計(jì)劃至少提前兩天完成任務(wù),則以后幾天平均每天至少要完成的土方數(shù)x應(yīng)滿足的不等式為。2.限速40km∕h的路標(biāo),指示司機(jī)在前方路段行駛時(shí),應(yīng)使汽車的速度v不超過(guò)40km∕h,寫成
2024-12-02 10:14
【總結(jié)】12不等式的定義:用不等號(hào)連接兩個(gè)解析式所得的式子,叫做不等式.說(shuō)明:(1)不等號(hào)的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對(duì)數(shù)式和三角式等)(3)不等式研究的范圍是實(shí)數(shù)集R.3對(duì)于任意兩個(gè)實(shí)數(shù)a、b,在a>b,a=b,a
2024-11-18 12:09
【總結(jié)】第三章不等式§不等關(guān)系與不等式自主學(xué)習(xí)知識(shí)梳理1.比較實(shí)數(shù)a,b的大小(1)文字?jǐn)⑹鋈绻鸻-b是正數(shù),那么a________b;如果a-b為_(kāi)_____,那么a=b;如果a-b是負(fù)數(shù),那么a______b,反之也成立.(2)符號(hào)表示a-b0?
2024-11-19 06:19
【總結(jié)】不等式和絕對(duì)值不等式第一講.,數(shù)學(xué)研究的重要內(nèi)容不等式是式表示這樣的不等關(guān)系人們常用不等上存在的不等關(guān)系來(lái)描述客觀事物在數(shù)量輕與重矮、人們常用長(zhǎng)與短、高與現(xiàn)實(shí)中,,??????不等式一不等式的基本性質(zhì)1:,,.的大小位置關(guān)系來(lái)規(guī)定實(shí)數(shù)利用數(shù)軸上的點(diǎn)的左右因此可以對(duì)應(yīng)數(shù)軸上的點(diǎn)與實(shí)數(shù)一一道知我們實(shí)數(shù)的大小關(guān)系研究不等式的出
2024-11-18 12:12
【總結(jié)】初二數(shù)學(xué)不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>4;(6)3-x-1;(7)2(x+1)3x;(8)3(x
2025-03-25 07:46
【總結(jié)】一元二次不等式及其解法A組基礎(chǔ)鞏固1.二次方程ax2+bx+c=0的兩根為-2,3,a0的解集為()A.{x|x3或x2或x-3}C.{x|-2x3}D.{x|-3x2}
2024-12-09 03:40
【總結(jié)】精品課件不等關(guān)系與不等式精品課件在考察事物之間的數(shù)量關(guān)系時(shí),經(jīng)常要對(duì)數(shù)量的大小進(jìn)行比較,我們來(lái)看下面的例子。國(guó)際上常用恩格爾系數(shù)(記為n)來(lái)衡量一個(gè)國(guó)家和地區(qū)人民的生活水平的高低。它的計(jì)算公式是。%n??100食品消費(fèi)額消
2025-01-06 15:06
【總結(jié)】課題:第九章不等式與不等式組全章復(fù)習(xí)課(第一課時(shí))教學(xué)目標(biāo)1、知識(shí)與技能目標(biāo)歸納本章學(xué)過(guò)的知識(shí),使學(xué)生系統(tǒng)理解本章的知識(shí)結(jié)構(gòu),正確掌握不等式的性質(zhì),熟練地解一元一次不等式和一元一次不等式組,并會(huì)借助數(shù)軸確定不等式(組)的解集.2、過(guò)程與方法目標(biāo)允許學(xué)生暴露在解不等式(組)時(shí)易犯或常犯的錯(cuò)誤,發(fā)展學(xué)生嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣和
2025-01-09 17:39
【總結(jié)】第一課時(shí)二維形式的柯西不等式(一)教學(xué)要求:認(rèn)識(shí)二維柯西不等式的幾種形式,理解它們的幾何意義,并會(huì)證明二維柯西不等式及向量形式.教學(xué)重點(diǎn):會(huì)證明二維柯西不等式及三角不等式.教學(xué)難點(diǎn):理解幾何意義.教學(xué)過(guò)程:一、復(fù)習(xí)準(zhǔn)備:1.提問(wèn):二元均值不等式有哪幾種形式?答案:(0,0)2abab
2024-11-19 20:23
【總結(jié)】第八講不等式與不等式組一、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點(diǎn)精析考點(diǎn)一:不等式基本性質(zhì)運(yùn)用1.由x0D.a2,則a的取值范圍是( ?。〢.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【總結(jié)】本專題主要考查利用不等式性質(zhì)判斷不等式或有關(guān)結(jié)論是否成立,再就是利用不等式性質(zhì),進(jìn)行數(shù)值(或代數(shù)式)大小的比較,有時(shí)考查分類討論思想,常與函數(shù)、數(shù)列等知識(shí)綜合進(jìn)行考查.[例1]若a、b是任意實(shí)數(shù),且a>b,則()A.a(chǎn)2>b2B.ab<
2025-05-25 18:12
【總結(jié)】不等式與不等式組專題復(fù)習(xí)(一)不等式考點(diǎn)1:不等式的定義知識(shí)點(diǎn)::用符號(hào)“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號(hào)表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負(fù)數(shù),則x<0;③x是非負(fù)數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
【總結(jié)】第2課時(shí)基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會(huì)解決有關(guān)的實(shí)際應(yīng)用問(wèn)題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-18 08:10
【總結(jié)】1.滿足不等式的整數(shù)是()A.-1,0,1,2,3B.0,1,2,3C.0,1D.-3,-2,-1,0,1()A.12B.3C.7D.24
2025-06-22 22:59
【總結(jié)】不等關(guān)系與不等式(第2課時(shí))學(xué)習(xí)目標(biāo)...合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境問(wèn)題1:等式的性質(zhì)有哪些?請(qǐng)大家用符號(hào)表示出來(lái).問(wèn)題2:根據(jù)等式的這些性質(zhì),你能猜想不等式的類似性質(zhì)嗎?請(qǐng)大家加以探究.二、信息交流,揭示規(guī)律問(wèn)題3:上面得到的結(jié)論是否正確,需要我們給出證明
2024-12-09 03:41