freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

數(shù)學分析復習題-文庫吧

2024-10-12 09:18 本頁面


【正文】 )),求j(x)x=1.=x2+y21在點P(2,1,4)處的切平面及法線方程。rP(1,1,1)40.設f(x,y,z)=x+y+z,求f在點0的梯度及沿方向l:(2,2,1)的方向?qū)?shù).第二篇:數(shù)學分析360《數(shù)學分析》考試大綱一. 考試要求:掌握函數(shù),極限,微分,積分與級數(shù)等內(nèi)容。二. 考試內(nèi)容:第一篇 函數(shù)一元與多元函數(shù)的概念,性質(zhì),若干特殊函數(shù),連續(xù)性。第二篇 極限數(shù)列極限,一元與多元函數(shù)極限的概念及其性質(zhì),實數(shù)的連續(xù)性(確界原理,單調(diào)有界原理,區(qū)間套定理,聚點定理,有限覆蓋定理等)。第三篇 微分一元與多元函數(shù)導數(shù)(偏導數(shù))與微分的概念,性質(zhì),公式,法則及應用;函數(shù)的單調(diào)性與凸性,極值與拐點,漸進線,函數(shù)作圖;隱函數(shù)。第三篇 積分不定積分的概念,性質(zhì),公式,法則;定積分的概念,性質(zhì),公式,法則及應用;反常積分與含參積分;重積分與曲線曲面積分。第四篇 級數(shù)數(shù)項級數(shù),函數(shù)項級數(shù),冪級數(shù)與傅立葉級數(shù)的概念,性質(zhì),公式,法則及應用。參考書目:華東師范大學數(shù)學系,數(shù)學分析(上,下,第三版),高等教育出版社,2001年。第三篇:數(shù)學分析《數(shù)學分析》考試大綱一、本大綱適用于報考蘇州科技學院基礎數(shù)學專業(yè)的碩士研究生入學考試。主要考核數(shù)學分析課程的基本概念、基本理論、基本方法。二、考試內(nèi)容與要求(一)實數(shù)集與函數(shù)實數(shù):實數(shù)的概念,實數(shù)的性質(zhì),絕對值與不等式。數(shù)集、確界原理:區(qū)間與鄰域,有界集與無界集,上確界與下確界,確界原理。函數(shù)概念:函數(shù)的定義,函數(shù)的表示法(解析法、列表法、和圖象法),分段函數(shù);具有某些特征的函數(shù):有界函數(shù),單調(diào)函數(shù),奇函數(shù)與偶函數(shù),周期函數(shù)。要求:了解數(shù)學的發(fā)展史與實數(shù)的概念,理解絕對值不等式的性質(zhì),會解絕對值不等式;弄清區(qū)間和鄰域的概念, 理解確界概念、確界原理,會利用定義證明一些簡單數(shù)集的確界;掌握函數(shù)的定義及函數(shù)的表示法,了解函數(shù)的運算;理解和掌握一些特殊類型的函數(shù)。(二)數(shù)列極限極限概念;收斂數(shù)列的性質(zhì):唯一性,有界性,保號性,單調(diào)性;數(shù)列極限存在的條件:單調(diào)有界準則,迫斂性法則,柯西準則。要求:逐步透徹理解和掌握數(shù)列極限的概念;掌握并能運用eN語言處理極限問題;掌握收斂數(shù)列的基本性質(zhì)和數(shù)列極限的存在條件(單調(diào)有界函數(shù)和迫斂性定理),并能運用;了解數(shù)列極限柯西準則,了解子列的概念及其與數(shù)列極限的關系;了解無窮小數(shù)列的概念及其與數(shù)列極限的關系.(三)函數(shù)極限函數(shù)極限的概念,單側極限的概念;函數(shù)極限的性質(zhì):唯一性,局部有界性,局部保號性,不等式性,迫斂性;函數(shù)極限存在的條件:歸結原則(Heine定理),柯西準則;兩個重要極限;無窮小量與無窮大量,階的比較。要求:理解和掌握函數(shù)極限的概念;掌握并能應用ed, eX語言處理極限問題;了解函數(shù)的單側極限,函數(shù)極限的柯西準則;掌握函數(shù)極限的性質(zhì)和歸結原則;熟練掌握兩個重要極限來處理極限問題。(四)函數(shù)連續(xù)函數(shù)連續(xù)的概念:一點連續(xù)的定義,區(qū)間連續(xù)的定義,單側連續(xù)的定義,間斷點及其分類;連續(xù)函數(shù)的性質(zhì):局部性質(zhì)及運算,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大最小值性、有界性、介值性、一致連續(xù)性),復合函數(shù)的連續(xù)性,反函數(shù)的連續(xù)性;初等函數(shù)的連續(xù)性。要求:理解與掌握一元函數(shù)連續(xù)性、一致連續(xù)性的定義及其證明,理解與掌握函數(shù)間斷點及其分類,連續(xù)函數(shù)的局部性質(zhì);理解單側連續(xù)的概念;能正確敘述和簡單應用閉區(qū)間上連續(xù)函數(shù)的性質(zhì);了解反函數(shù)的連續(xù)性,理解復合函數(shù)的連續(xù)性,初等函數(shù)的連續(xù)性。(五)導數(shù)與微分導數(shù)概念:導數(shù)的定義、單側導數(shù)、導函數(shù)、導數(shù)的幾何意義;求導法則:導數(shù)公式、導數(shù)的運算(四則運算)、求導法則(反函數(shù)的求導法則,復合函數(shù)的求導法則,隱函數(shù)的求導法則,參數(shù)方程的求導法則);微分:微分的定義,微分的運算法則,微分的應用;高階導數(shù)與高階微分。要求:理解和掌握導數(shù)與微分概念,了解它的幾何意義;能熟練地運用導數(shù)的運算性質(zhì)和求導法則求函數(shù)的導數(shù);理解單側導數(shù)、可導性與連續(xù)性的關系,高階導數(shù)的求法;了解導數(shù)的幾何應用,微分在近似計算中的應用。(六)微分學基本定理中值定理:羅爾中值定理、拉格朗日中值定理、柯西中值定理;幾種特殊類型的不定式極限與羅比塔法則;泰勒公式。要求:掌握中值定理的內(nèi)容、證明及其應用;了解泰勒公式及在近似計算中的應用,能夠把某些函數(shù)按泰勒公式展開;能熟練地運用羅必達法則求不定式的極限(七)導數(shù)的應用函數(shù)的單調(diào)性與極值;:了解和掌握函數(shù)的某些特性(單調(diào)性、極值與最值、凹凸性、拐點)及其判斷方法,能利用函數(shù)的特性解決相關的實際問題。(八)實數(shù)完備性定理及應用實數(shù)完備性六個等價定理:閉區(qū)間套定理、單調(diào)有界定理、柯西收斂準則、確界存在定理、聚點定理、有限覆蓋定理;閉區(qū)間上連續(xù)函數(shù)整體性質(zhì)的證明:有界性定理的證明,最大小值性定理的證明,介值性定理的證明,一致連續(xù)性定理的證明;上、下極限。要求:了解實數(shù)連續(xù)性的幾個定理和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)的證明;理解聚點的概念,上、下極限的概念。(九)不定積分不定積分概念;換元積分法與分部積分法;幾類可化為有理函數(shù)的積分;要求:理解原函數(shù)和不定積分概念;熟練掌握換元積分法、分部積分法、有理式積分法、簡單無理式和三角有理式積分法。(十)定積分定積分的概念:概念的引入、黎曼積分定義,函數(shù)可積的必要條件;可積性條件:可積的必要條件和充要條件,達布上和與達布下和,可積函數(shù)類(連續(xù)函數(shù),只有有限個間斷點的有界函數(shù),單調(diào)函數(shù));微積分學基本定理:可變上限積分,牛頓萊布尼茲公式;非正常積分:無窮積分收斂與發(fā)散的概念,審斂法(柯西準則,比較法,狄利克雷與阿貝爾判別法);瑕積分的收斂與發(fā)散的概念,收斂判別法。要求:理解定積分概念及函數(shù)可積的條件;熟悉一些可積分函數(shù)類,會一些較簡單的可積性證明;掌握定積分與可變上限積分的性質(zhì);能較好地運用牛頓萊布尼茲公式,換元積分法,分部積分法計算一些定積分。掌握廣義積分的收斂、發(fā)散、絕對收斂與條件收斂等概念;能用收斂性判別法判斷某些廣義積分的收斂性。(十一)定積分的應用定積分的幾何應用:平面圖形的面積,微元法,已知截面面積函數(shù)的立體體積,旋轉(zhuǎn)體的體積平面曲線的弧長與微分,曲率;定積分在物理上的應用:功、液體壓力、引力。要求:重點掌握定積分的幾何應用;掌握定積分在物理上的應用;在理解并掌握“微元法”。(十二)數(shù)項級數(shù)級數(shù)的斂散性:無窮級數(shù)收斂,發(fā)散等概念,柯西準則,收斂級數(shù)的基本性質(zhì);正項級數(shù):比較原理,達朗貝爾判別法,柯西判別法,積分判別法;一般項級數(shù):交錯級數(shù)與萊布尼茲判別法,絕對收斂級數(shù)與條件收斂級數(shù)及其性質(zhì),阿貝爾判別法與狄利克雷判別法。要求:理解無窮級數(shù)的收斂、發(fā)散、絕對收斂與條件收斂等概念;掌握收斂級數(shù)的性質(zhì);能夠應用正項級數(shù)與任意
點擊復制文檔內(nèi)容
教學課件相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1