【總結(jié)】例3AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測(cè)量建筑物高度AB的方法分析:由于建筑物的底部B是不可到達(dá)的,所以不能直接測(cè)量出建筑物的高。由解直角三角形的知識(shí),只要能測(cè)出一點(diǎn)C到建筑物的頂部A的距離CA,并測(cè)出由點(diǎn)C觀察A的仰角,就可以計(jì)算出建筑物的高。所以應(yīng)該設(shè)法借助解三角形的知識(shí)測(cè)出CA的長(zhǎng)。)
2024-08-25 01:09
【總結(jié)】......正弦定理、余弦定理練習(xí)題年級(jí)__________班級(jí)_________學(xué)號(hào)_________姓名__________分?jǐn)?shù)____一、選擇題(共20題,題分合計(jì)100分)△ABC中,sinA
2025-03-25 04:59
【總結(jié)】課題:正弦定理、余弦定理綜合運(yùn)用(二)?課題:正弦定理、余弦定理綜合運(yùn)用(二)知識(shí)目標(biāo):1、三角形形狀的判斷依據(jù);?2、利用正弦、余弦定理進(jìn)行邊角互換。能力目標(biāo):1、進(jìn)一步熟悉正、余弦定理;2、
2024-11-09 12:40
【總結(jié)】高考風(fēng)向 、余弦定理的推導(dǎo);、余弦定理判斷三角形的形狀和解三角形;、余弦定理、面積公式以及三角函數(shù)中恒等變換、誘導(dǎo)公式等知識(shí)點(diǎn)進(jìn)行綜合考查.學(xué)習(xí)要領(lǐng) 、余弦定理的意義和作用;、余弦定理實(shí)現(xiàn)三角形中的邊角轉(zhuǎn)換,和三角函數(shù)性質(zhì)相結(jié)合.基礎(chǔ)知識(shí)梳理1.正弦定理:===2R,其中R是三角形外接圓的半徑.由正弦定理可以變形:(1)a∶b∶c=sin_A∶sin_B∶sin_C;(
2025-06-28 04:30
【總結(jié)】正弦定理、余弦定理基礎(chǔ)練習(xí) 1.在△ABC中: ?。?)已知、、,求b; ?。?)已知、、,求. 2.在△ABC中(角度精確到1°): ?。?)已知、c=7、B=60°,求C; ?。?)已知、b=7、A=50°,求B. 3.在△ABC中(結(jié)果保留兩個(gè)有效數(shù)字): ?。?)已知a=5、b=7、C=120°,求
2025-06-25 03:15
【總結(jié)】第一篇:正弦定理和余弦定理教學(xué)設(shè)計(jì)教案 教學(xué)準(zhǔn)備 知識(shí)目標(biāo):理解并掌握正弦定理,能初步運(yùn)用正弦定理解斜三角形; 技能目標(biāo):理解用向量方法推導(dǎo)正弦定理的過(guò)程,進(jìn)一步鞏固向量知識(shí),體現(xiàn)向量的工具...
2024-10-03 10:39
【總結(jié)】第一篇:正弦定理與余弦定理教案 正弦定理與余弦定理教案-------鄂倫春中學(xué)祁永臣 教學(xué)要求: 教學(xué)要求:通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;::: 一...
2024-10-06 07:01
【總結(jié)】正弦余弦定理證明教案【基礎(chǔ)知識(shí)精講】、三角形面積公式正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,并且都等于該三角形外接圓的直徑,即:===2R.面積公式:S△=bcsinA=absinC=acsinB.變形:(1)a=2RsinA,b=2RsinB,c=2RsinC(2)sinA∶sinB∶sinC=a∶b∶c(3)sinA=,sinB=,sinC=.
2025-04-17 04:49
【總結(jié)】第一篇:《正弦定理和余弦定理》教學(xué)反思 《正弦定理、余弦定理》教學(xué)反思 我對(duì)教學(xué)所持的觀念是:數(shù)學(xué)學(xué)習(xí)的主要目的是:“在掌握知識(shí)的同時(shí),領(lǐng)悟由其內(nèi)容反映出來(lái)的數(shù)學(xué)思想方法,要在思維能力、情感態(tài)度與...
2024-10-03 14:50
【總結(jié)】正弦定理和余弦定理的應(yīng)用舉例考點(diǎn)梳理1.用正弦定理和余弦定理解三角形的常見(jiàn)題型測(cè)量距離問(wèn)題、高度問(wèn)題、角度問(wèn)題、計(jì)算面積問(wèn)題、航海問(wèn)題、物理問(wèn)題等.2.實(shí)際問(wèn)題中的常用角(1)仰角和俯角與目標(biāo)線在同一鉛垂平面內(nèi)的水平視線和目標(biāo)視線的夾角,目標(biāo)視線在水平視線上方的角叫仰角,目標(biāo)視線在水平視線下方的角叫俯角(如圖①).(2)方向角:相對(duì)于某正方向的水平角,
2025-06-24 02:22
【總結(jié)】2013高考數(shù)學(xué)備考訓(xùn)練-正弦定理和余弦定理應(yīng)用舉例一、選擇題1.從A處望B處的仰角為α,從B處望A處的俯角為β,則α,β之間的關(guān)系是( )A.αβ B.α=βC.α+β=90°D.α+β=180°答案 B2.如圖,在河岸AC測(cè)量河的寬度BC,圖中所標(biāo)的數(shù)據(jù)a,b,c,α,β是可供測(cè)量的數(shù)據(jù).下面給出的四組數(shù)據(jù)中,
2025-06-07 23:38
【總結(jié)】《正弦定理和余弦定理》典型例題透析類(lèi)型一:正弦定理的應(yīng)用:例1.已知在中,,,,解三角形.思路點(diǎn)撥:先將已知條件表示在示意圖形上(如圖),可以確定先用正弦定理求出邊,然后用三角形內(nèi)角和求出角,最后用正弦定理求出邊.解析:,∴,∴,又,∴.總結(jié)升華:1.正弦定理可以用于解決已知兩角和一邊求另兩邊和一角的問(wèn)題;2.數(shù)形結(jié)合將已知條件表示在示
【總結(jié)】正弦定理與余弦定理第1章三角計(jì)算及其應(yīng)用創(chuàng)設(shè)情境興趣導(dǎo)入CBAcabsinsinabABcc??,我們知道,在直角三角形ABC(如圖)中,,即sinsinabccAB??,,90C??sin1C?由于,所以,于是sinccC?.所
2024-11-17 16:57
2024-11-18 08:40
【總結(jié)】第3課時(shí)正弦定理、余弦定理的綜合應(yīng)用、余弦定理的內(nèi)容.,選擇恰當(dāng)?shù)墓浇馊切?,進(jìn)一步理解正弦定理、余弦定理的作用.2021年,敘利亞內(nèi)戰(zhàn)期間,為了準(zhǔn)確分析戰(zhàn)場(chǎng)形式,美軍派出偵查分隊(duì)由分別位于敘利亞的兩處地點(diǎn)C和D進(jìn)行觀測(cè),測(cè)得敘利亞的兩支精銳部隊(duì)分別位于A和B處,美軍測(cè)得的數(shù)據(jù)包
2024-12-08 02:37