【總結(jié)】第一章 導(dǎo)數(shù)及其應(yīng)用§教學(xué)目標(biāo):1.理解平均變化率的概念;2.了解平均變化率的幾何意義;3.會求函數(shù)在某點處附近的平均變化率教學(xué)重點:平均變化率的概念、函數(shù)在某點處附近的平均變化率;教學(xué)難點:平均變化率的概念.教學(xué)過程:一.創(chuàng)設(shè)情景為了描述現(xiàn)實世界中運動、過程等變化著的現(xiàn)象,在數(shù)學(xué)中引入了函數(shù),隨著對函數(shù)的研究,產(chǎn)生了微積分,微積分的創(chuàng)立以自然科學(xué)中四
2025-04-17 13:03
【總結(jié)】2.反證法理解反證法的概念,掌握反證法證題的步驟.本節(jié)重點:反證法概念的理解以及反證法的證題步驟.本節(jié)難點:應(yīng)用反證法解決問題.1.反證法假設(shè)原命題(即在原命題的條件下,結(jié)論不成立),經(jīng)過正確的推理,最后得出矛盾,因此說明,從而證明了,這種證明方法叫做反證法
2024-11-17 23:14
【總結(jié)】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)平面學(xué)案新人教A版必修2【學(xué)習(xí)目標(biāo)】了解平面的概念,掌握平面的畫法及表示法掌握平面的基本性質(zhì)及它們的作用3、會用文字語言、圖形語言、符號語言表示點、線、面的位置關(guān)系【學(xué)習(xí)重點】學(xué)習(xí)重點:掌握平面的基本性質(zhì)及它們的作用學(xué)習(xí)難點:掌握平面的基本性質(zhì)及它們的作用【自主學(xué)習(xí)】閱
2024-12-05 01:53
【總結(jié)】微積分基本定理【教學(xué)目標(biāo)】,會求簡單的定積分,體會微積分定理的優(yōu)越性;,感受極限的思想;“質(zhì)量互變、對立統(tǒng)一”的觀點.【教學(xué)重點】定理的應(yīng)用【教學(xué)難點】定理的推導(dǎo)一、課前預(yù)習(xí):(閱讀教材40—41頁)微積分定理:如果,且)(xf在],[ba上可積,則??badxxf)(
2024-12-03 11:30
【總結(jié)】2.演繹推理理解演繹推理的概念,掌握演繹推理的形式,并能用它們進(jìn)行一些簡單的推理,了解合情推理與演繹推理的聯(lián)系與區(qū)別.本節(jié)重點:演繹推理的結(jié)構(gòu)特點.本節(jié)難點:三段論推理規(guī)則.1.演繹推理從的原理出發(fā),推出情況下的結(jié)論的推理形式.它的特點是:由的推理.它的特征是:當(dāng)
2024-11-17 23:15
【總結(jié)】2.2直接證明與間接證明2.綜合法與分析法理解綜合法和分析法的概念及它們的區(qū)別,能熟練地運用綜合法、分析法證題.本節(jié)重點:綜合法與分析法的概念及用分析法與綜合法證題的過程、特點.本節(jié)難點:用綜合法與分析法證明命題.綜合法和分析法綜合法分析法定義利用和某些
2024-11-18 08:10
【總結(jié)】3.復(fù)數(shù)代數(shù)形式的乘除運算掌握復(fù)數(shù)的乘法、除法的運算法則并能熟練準(zhǔn)確地運用法則解決相關(guān)的問題.本節(jié)重點:復(fù)數(shù)代數(shù)形式的乘除運算.本節(jié)難點:復(fù)數(shù)除法.1.復(fù)數(shù)乘法運算法則設(shè)z1=a+bi,z2=c+di(a、b、c、d∈R),則z1z2=(a+bi)(c+di)=.2
2024-11-17 23:19
【總結(jié)】1.7定積分的簡單應(yīng)用利用定積分的思想方法解決一些簡單曲邊圖形的面積、變速直線運動的路程、變力作功等問題.本節(jié)重點:應(yīng)用定積分的思想方法,解決一些簡單的諸如求曲邊梯形面積、變速直線運動的路程、變力作功等實際問題.本節(jié)難點:把實際問題抽象為定積分的數(shù)學(xué)模型.1.利用定
【總結(jié)】①復(fù)數(shù)的分類a+bi?????實數(shù)(b=0)虛數(shù)(b≠0)?????純虛數(shù)(a=0)非純虛數(shù)(a≠0)②處理有關(guān)復(fù)數(shù)概念的問題,首先可找準(zhǔn)復(fù)數(shù)的實部與虛部(若復(fù)數(shù)為非標(biāo)準(zhǔn)代數(shù)形式,則應(yīng)通過代數(shù)運算化為代數(shù)形式)
【總結(jié)】1.4生活中的優(yōu)化問題舉例能利用導(dǎo)數(shù)知識解決實際生活中的最優(yōu)化問題.本節(jié)重點:利用導(dǎo)數(shù)知識解決實際中的最優(yōu)化問題.本節(jié)難點:將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,建立函數(shù)模型.1.解決實際應(yīng)用問題時,要把問題中所涉及的幾個變量轉(zhuǎn)化成函數(shù)關(guān)系式,這需要通過分析、聯(lián)想、抽象和轉(zhuǎn)
【總結(jié)】1.導(dǎo)數(shù)的概念對于函數(shù)y=f(x),如果自變量x在x0處有增量Δx,那么函數(shù)y相應(yīng)地有增量Δy=f(x0+Δx)-f(x0),比值ΔyΔx就叫做函數(shù)y=f(x)從x0到x0+Δx的平均變化率,即ΔyΔx=
2024-11-17 19:03
【總結(jié)】3.2復(fù)數(shù)代數(shù)形式的四則運算3.復(fù)數(shù)代數(shù)形式的加減運算及其幾何意義掌握復(fù)數(shù)加法、減法的運算法則及其幾何意義,并能熟練地運用法則解決相關(guān)的問題.本節(jié)重點:復(fù)數(shù)代數(shù)形式的加減法.本節(jié)難點:復(fù)數(shù)代數(shù)形式加減法的幾何意義.1.復(fù)數(shù)代數(shù)形式的加、減法運算法則設(shè)z1=a+bi,z2=c+di(a、b、
2024-11-17 17:04
【總結(jié)】1.導(dǎo)數(shù)的概念1.知道函數(shù)的瞬時變化率的概念,理解導(dǎo)數(shù)的概念.2.能利用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).本節(jié)重點:導(dǎo)數(shù)的定義.本節(jié)難點:用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).對導(dǎo)數(shù)的定義要注意:第一:Δx是自變量x在x0處的改變量,所以Δx可正可負(fù),但Δx≠
【總結(jié)】1.了解復(fù)合函數(shù)的定義,并能寫出簡單函數(shù)的復(fù)合過程;2.掌握復(fù)合函數(shù)的求導(dǎo)方法,并運用求導(dǎo)方法求簡單的復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)重點:①導(dǎo)數(shù)公式和導(dǎo)數(shù)運算法則的應(yīng)用.②復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)難點:復(fù)合函數(shù)的求導(dǎo)方法.復(fù)合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和
【總結(jié)】定積分雙基達(dá)標(biāo)?限時20分鐘?1.S1=??012xdx,S2=??013xdx的大小關(guān)系是().A.S1=S2B.S21=S2C.S1>S2D.S1<S2解析??012xdx表示的是由曲線y=2x,x=0,x=1及x軸所圍成的圖形面積,而??0
2024-12-03 00:13