【總結(jié)】反證法一.反證法證明命題“設(shè)p為正整數(shù),如果p2是偶數(shù),則p也是偶數(shù)”,我們可以不去直接證明p是偶數(shù),而是否定p是偶數(shù),然后得到矛盾,從而肯定p是偶數(shù)。具體證明步驟如下:假設(shè)p不是偶數(shù),可令p=2k+1,k為整數(shù)??傻胮2=4k2+4k+1,此式表明,p2是奇數(shù),這與假設(shè)矛盾,因此假設(shè)p不是偶數(shù)不成立,從而證明
2024-11-18 01:21
【總結(jié)】復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標(biāo)系來表示復(fù)數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復(fù)數(shù)平面(簡稱復(fù)平面)一一對應(yīng)z=a+bi復(fù)數(shù)的幾何意義(一)
2024-11-18 15:23
【總結(jié)】-歸納推理歌德巴赫猜想:“任何一個不小于6的偶數(shù)都等于兩個奇數(shù)之和”即:偶數(shù)=奇質(zhì)數(shù)+奇質(zhì)數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學(xué)難題之一。哥德巴赫是德國一位中學(xué)教師,也是一位著名的數(shù)學(xué)家,生于1690年,1725年當(dāng)選為俄國彼得堡科學(xué)院院士。1742年,哥德巴赫在教學(xué)中發(fā)現(xiàn),每個
2024-11-18 15:24
【總結(jié)】演繹推理演繹推理課時安排:兩課時課型:新授課教學(xué)目標(biāo):一、知識與技能:了解演繹推理的含義,能利用“三段論”進(jìn)行簡單的推理。二、過程與方法:結(jié)合具體實例,了解演繹推理與合情推理的聯(lián)系和差異。三、情感態(tài)度價值觀:
【總結(jié)】1、觀察1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=,……由上述具體事實能得到怎樣的結(jié)論?2、在平面內(nèi),若a⊥c,b⊥c,則a//b.類比地推廣到空間,你會得到什么結(jié)論?并判斷正誤。正確錯誤(可能相交)
【總結(jié)】復(fù)數(shù)的運算(二)【教學(xué)目標(biāo)】掌握復(fù)數(shù)的除法運算,深刻理解它是乘法運算的逆運算;理解并掌握復(fù)數(shù)的除法運算實質(zhì)是分母實數(shù)化類問題;體會到知識是生產(chǎn)實踐的需要從而積極主動地建構(gòu)知識體系.【教學(xué)重點】復(fù)數(shù)除法運算規(guī)則【教學(xué)難點】分母實數(shù)化一、課前預(yù)習(xí):(教材95頁)1.已知),(Rbabiaz???,則?z1
2024-11-19 10:27
【總結(jié)】12.,??""""?."",.,;"",定積分學(xué)知識我們需要學(xué)習(xí)新的數(shù)為此直線運動的問題速解決變的知識能否利用勻速直線運動積面直邊圖形轉(zhuǎn)化為求面積曲邊圖形把求能否呢如何解決這些問題變力做功的問題物體位移、的面積、變速直線運動曲邊圖形的平
【總結(jié)】§微積分基本定理學(xué)習(xí)目標(biāo)思維脈絡(luò)1.通過實例能直觀了解微積分基本定理.2.能利用微積分基本定理求基本函數(shù)的定積分.3.了解導(dǎo)數(shù)與定積分的關(guān)系.4.能在具體的應(yīng)用中體會微積分基本定理的作用和意義.微積分基本定理微積分基本定理:如果連續(xù)函數(shù)f(x)
2024-11-18 13:32
【總結(jié)】利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性【教學(xué)目標(biāo)】了解并掌握函數(shù)單調(diào)性的定義以及導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,會利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,會利用導(dǎo)數(shù)畫出函數(shù)的大致圖像?!窘虒W(xué)重點】利用導(dǎo)數(shù)求單調(diào)區(qū)間【教學(xué)難點】導(dǎo)數(shù)與單調(diào)性的關(guān)系一、課前預(yù)習(xí)(閱讀教材24--25頁,填寫知識點.):怎樣判斷函數(shù)的單調(diào)性?1、__________2、__
2024-12-03 11:30
【總結(jié)】§定積分目的要求:(1)定積分的定義(2)利用定積分的定義求函數(shù)的積分,掌握步驟(3)定積分的幾何意義(4)會用定積分表示陰影部分的面積重點難點:定積分的定義是本節(jié)的重點,定積分的幾何意義的應(yīng)用是本節(jié)的難點。教學(xué)內(nèi)容:定積分:一般地,設(shè)函數(shù)()fx在區(qū)間[
2024-11-19 21:26
【總結(jié)】120y0x1xx?y?xyOy=f(x)1yAB00()()fxxfxyxx???????物體運動的平均速度00()()sttststt???????物體運動的瞬時速度0000()()limlimttstts
【總結(jié)】推理與證明第二章章末歸納總結(jié)第二章知識結(jié)構(gòu)1知識梳理2隨堂練習(xí)4專題探究3知識結(jié)構(gòu)知識梳理推理與證明要解決的主要問題:運用合情推理的思維方式探索、發(fā)現(xiàn)一些數(shù)學(xué)結(jié)論,可運用演繹推理來加以證明.學(xué)會了綜合法、分析法及反
2024-11-17 20:10
【總結(jié)】本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2Z=a+bi(a,b∈R)實部!虛部!復(fù)數(shù)的代數(shù)形式:一個復(fù)數(shù)由有序?qū)崝?shù)對(a,b)確定本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理3實數(shù)可以用數(shù)軸上的點來表示。實數(shù)數(shù)軸上的點一一對應(yīng)(數(shù))(形)類比實數(shù)
【總結(jié)】(1)對于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法.歸納法{完全歸納法不完全歸納法由特殊一般特點:a2=a1+da3=a1+2da4=a1+3d……an=a1+(n-1)d如何證明:1+3+5+…+(2n-1)=
【總結(jié)】1復(fù)數(shù)的除法2復(fù)數(shù)除法的法則復(fù)數(shù)的除法是乘法的逆運算,滿足(c+di)(x+yi)=(a+bi)(c+di≠0)的復(fù)數(shù)x+yi,叫做復(fù)數(shù)a+bi除以復(fù)數(shù)c+di的商,記作.a+bic+di3a+bic+di=(a+bi)(c-di)(c+di