【總結(jié)】反證法一.反證法證明命題“設(shè)p為正整數(shù),如果p2是偶數(shù),則p也是偶數(shù)”,我們可以不去直接證明p是偶數(shù),而是否定p是偶數(shù),然后得到矛盾,從而肯定p是偶數(shù)。具體證明步驟如下:假設(shè)p不是偶數(shù),可令p=2k+1,k為整數(shù)??傻胮2=4k2+4k+1,此式表明,p2是奇數(shù),這與假設(shè)矛盾,因此假設(shè)p不是偶數(shù)不成立,從而證明
2024-11-18 01:21
【總結(jié)】復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點(diǎn)Z(a,b)xyobaZ(a,b)建立了平面直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面x軸------實(shí)軸y軸------虛軸(數(shù))(形)------復(fù)數(shù)平面(簡(jiǎn)稱(chēng)復(fù)平面)一一對(duì)應(yīng)z=a+bi復(fù)數(shù)的幾何意義(一)
2024-11-18 15:23
【總結(jié)】-歸納推理歌德巴赫猜想:“任何一個(gè)不小于6的偶數(shù)都等于兩個(gè)奇數(shù)之和”即:偶數(shù)=奇質(zhì)數(shù)+奇質(zhì)數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學(xué)難題之一。哥德巴赫是德國(guó)一位中學(xué)教師,也是一位著名的數(shù)學(xué)家,生于1690年,1725年當(dāng)選為俄國(guó)彼得堡科學(xué)院院士。1742年,哥德巴赫在教學(xué)中發(fā)現(xiàn),每個(gè)
2024-11-18 15:24
【總結(jié)】演繹推理演繹推理課時(shí)安排:兩課時(shí)課型:新授課教學(xué)目標(biāo):一、知識(shí)與技能:了解演繹推理的含義,能利用“三段論”進(jìn)行簡(jiǎn)單的推理。二、過(guò)程與方法:結(jié)合具體實(shí)例,了解演繹推理與合情推理的聯(lián)系和差異。三、情感態(tài)度價(jià)值觀:
【總結(jié)】1、觀察1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=,……由上述具體事實(shí)能得到怎樣的結(jié)論?2、在平面內(nèi),若a⊥c,b⊥c,則a//b.類(lèi)比地推廣到空間,你會(huì)得到什么結(jié)論?并判斷正誤。正確錯(cuò)誤(可能相交)
【總結(jié)】復(fù)數(shù)的運(yùn)算(二)【教學(xué)目標(biāo)】掌握復(fù)數(shù)的除法運(yùn)算,深刻理解它是乘法運(yùn)算的逆運(yùn)算;理解并掌握復(fù)數(shù)的除法運(yùn)算實(shí)質(zhì)是分母實(shí)數(shù)化類(lèi)問(wèn)題;體會(huì)到知識(shí)是生產(chǎn)實(shí)踐的需要從而積極主動(dòng)地建構(gòu)知識(shí)體系.【教學(xué)重點(diǎn)】復(fù)數(shù)除法運(yùn)算規(guī)則【教學(xué)難點(diǎn)】分母實(shí)數(shù)化一、課前預(yù)習(xí):(教材95頁(yè))1.已知),(Rbabiaz???,則?z1
2024-11-19 10:27
【總結(jié)】12.,??""""?."",.,;"",定積分學(xué)知識(shí)我們需要學(xué)習(xí)新的數(shù)為此直線運(yùn)動(dòng)的問(wèn)題速解決變的知識(shí)能否利用勻速直線運(yùn)動(dòng)積面直邊圖形轉(zhuǎn)化為求面積曲邊圖形把求能否呢如何解決這些問(wèn)題變力做功的問(wèn)題物體位移、的面積、變速直線運(yùn)動(dòng)曲邊圖形的平
【總結(jié)】§微積分基本定理學(xué)習(xí)目標(biāo)思維脈絡(luò)1.通過(guò)實(shí)例能直觀了解微積分基本定理.2.能利用微積分基本定理求基本函數(shù)的定積分.3.了解導(dǎo)數(shù)與定積分的關(guān)系.4.能在具體的應(yīng)用中體會(huì)微積分基本定理的作用和意義.微積分基本定理微積分基本定理:如果連續(xù)函數(shù)f(x)
2024-11-18 13:32
【總結(jié)】利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性【教學(xué)目標(biāo)】了解并掌握函數(shù)單調(diào)性的定義以及導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,會(huì)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,會(huì)利用導(dǎo)數(shù)畫(huà)出函數(shù)的大致圖像?!窘虒W(xué)重點(diǎn)】利用導(dǎo)數(shù)求單調(diào)區(qū)間【教學(xué)難點(diǎn)】導(dǎo)數(shù)與單調(diào)性的關(guān)系一、課前預(yù)習(xí)(閱讀教材24--25頁(yè),填寫(xiě)知識(shí)點(diǎn).):怎樣判斷函數(shù)的單調(diào)性?1、__________2、__
2024-12-03 11:30
【總結(jié)】§定積分目的要求:(1)定積分的定義(2)利用定積分的定義求函數(shù)的積分,掌握步驟(3)定積分的幾何意義(4)會(huì)用定積分表示陰影部分的面積重點(diǎn)難點(diǎn):定積分的定義是本節(jié)的重點(diǎn),定積分的幾何意義的應(yīng)用是本節(jié)的難點(diǎn)。教學(xué)內(nèi)容:定積分:一般地,設(shè)函數(shù)()fx在區(qū)間[
2024-11-19 21:26
【總結(jié)】120y0x1xx?y?xyOy=f(x)1yAB00()()fxxfxyxx???????物體運(yùn)動(dòng)的平均速度00()()sttststt???????物體運(yùn)動(dòng)的瞬時(shí)速度0000()()limlimttstts
【總結(jié)】推理與證明第二章章末歸納總結(jié)第二章知識(shí)結(jié)構(gòu)1知識(shí)梳理2隨堂練習(xí)4專(zhuān)題探究3知識(shí)結(jié)構(gòu)知識(shí)梳理推理與證明要解決的主要問(wèn)題:運(yùn)用合情推理的思維方式探索、發(fā)現(xiàn)一些數(shù)學(xué)結(jié)論,可運(yùn)用演繹推理來(lái)加以證明.學(xué)會(huì)了綜合法、分析法及反
2024-11-17 20:10
【總結(jié)】本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2Z=a+bi(a,b∈R)實(shí)部!虛部!復(fù)數(shù)的代數(shù)形式:一個(gè)復(fù)數(shù)由有序?qū)崝?shù)對(duì)(a,b)確定本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理3實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來(lái)表示。實(shí)數(shù)數(shù)軸上的點(diǎn)一一對(duì)應(yīng)(數(shù))(形)類(lèi)比實(shí)數(shù)
【總結(jié)】(1)對(duì)于某類(lèi)事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法.歸納法{完全歸納法不完全歸納法由特殊一般特點(diǎn):a2=a1+da3=a1+2da4=a1+3d……an=a1+(n-1)d如何證明:1+3+5+…+(2n-1)=
【總結(jié)】1復(fù)數(shù)的除法2復(fù)數(shù)除法的法則復(fù)數(shù)的除法是乘法的逆運(yùn)算,滿(mǎn)足(c+di)(x+yi)=(a+bi)(c+di≠0)的復(fù)數(shù)x+yi,叫做復(fù)數(shù)a+bi除以復(fù)數(shù)c+di的商,記作.a+bic+di3a+bic+di=(a+bi)(c-di)(c+di