【總結(jié)】導(dǎo)數(shù)與定積分總結(jié)知識點總結(jié):(一)對導(dǎo)數(shù)定義的理解;A:平均變化率瞬時變化率B:割線斜率切線斜率C:其實質(zhì)是從點x附近的平均變化率到點x的瞬時變化率;還要注意函數(shù)值的變化要與自變量的變化一致(1)設(shè)f(x)為可導(dǎo)函數(shù),則的為
2025-04-29 00:12
【總結(jié)】三角函數(shù)誘導(dǎo)公式tgA=tanA=sin(-a)=cosasin(+a)=cosasin(π-a)=sinasin(π+a)=-sinacos(-a)=cosacos(-a)=sinacos(+a)=-sinacos(π-a)=-cosacos(π+a)=-cosa
2025-06-23 18:29
【總結(jié)】高等數(shù)學教案變上限定積分函數(shù)及其導(dǎo)數(shù)教學內(nèi)容:變上限定積分函數(shù)及其導(dǎo)數(shù)。知識目標:使學生掌握變上限定積分函數(shù)的定義;使學生了解原函數(shù)存在定理的證明;使學生會熟練運用原函數(shù)存在定理求導(dǎo)數(shù)。情感目標:通過原函數(shù)存在定理體會積分和微分之間
2025-06-07 17:22
【總結(jié)】對數(shù)函數(shù)與指數(shù)函數(shù)的導(dǎo)數(shù)一、復(fù)習與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義....,我們已經(jīng)掌握了初等函數(shù)中的冪函數(shù)、三角函數(shù)的導(dǎo)數(shù),但還缺少指數(shù)函數(shù)、對數(shù)函數(shù)的導(dǎo)數(shù),而這就是我們今天要新學的內(nèi)容.有了指數(shù)函數(shù)、對數(shù)函數(shù)的導(dǎo)數(shù),也就解決了初等函
2025-05-15 02:15
【總結(jié)】一、復(fù)習目標了解導(dǎo)數(shù)概念的某些實際背景(瞬時速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念,熟記常見函數(shù)的導(dǎo)數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex,ax,lnx,logax的導(dǎo)數(shù),并能熟練應(yīng)用它們求有關(guān)導(dǎo)數(shù).二、重點解析
2025-08-05 05:46
【總結(jié)】推廣一元函數(shù)微分學二元函數(shù)微分學注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個條件的一切點構(gòu)成的集合。平面點集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點集稱為平面區(qū)域,通常記作D。0xy1
2025-07-26 01:41
2025-07-25 05:39
【總結(jié)】()基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運算法則基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(
2024-11-21 01:21
2024-11-11 02:10
【總結(jié)】《基本初等函數(shù)的公式及導(dǎo)數(shù)的運算法則》學案第二課時一、學習目標:、知識與技能熟練掌握基本初等函數(shù)的導(dǎo)數(shù)公式;掌握導(dǎo)數(shù)的四則運算法則;能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運算法則求簡單函數(shù)的導(dǎo)數(shù).、過程與方法根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式熟練的掌握導(dǎo)數(shù)的四則運算法則求簡單函數(shù)的導(dǎo)數(shù);對于一些常見的函數(shù),會利用公式求導(dǎo)數(shù)、情感態(tài)度價值觀引導(dǎo)學生學會分析問題和解
2025-04-17 00:22
【總結(jié)】復(fù)合函數(shù)的導(dǎo)數(shù)一、復(fù)習與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?為了解決上面
2024-11-06 19:05
【總結(jié)】返回導(dǎo)航上頁下頁人教A版數(shù)學·選修2-21.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用函數(shù)的極值與導(dǎo)數(shù)返回導(dǎo)航上頁下頁人教A版數(shù)學·選修2-2考綱定位重難突破1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與導(dǎo)數(shù)的關(guān)系,并會靈活應(yīng)用
2025-07-25 14:00
【總結(jié)】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點為函數(shù)則稱存在即處可導(dǎo)在點的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【總結(jié)】fx?'()0fxab?()(,)在內(nèi)單調(diào)遞增fx?'()0()(,)fxab?在內(nèi)單調(diào)遞減一般地,函數(shù)y=f(x)在某個區(qū)間(a,b)內(nèi)thaoh’(a)=0單調(diào)遞增h’(t)0單調(diào)遞減h’(t)0觀察高臺跳水運動圖象,
2025-08-04 18:40
【總結(jié)】(小)值與導(dǎo)數(shù)課前自主學案求函數(shù)f(x)的極值首先解方程f′(x)=f′(x0)=0時,(1)如果在x0附近的左側(cè)_________,右側(cè)__________,那么f(x0)是函數(shù)的_______;(2)如果在x0附近的左側(cè)_________,右側(cè)__________,那么f(x0)是函數(shù)的_______.
2025-07-26 19:47