【總結】......個性化輔導授課案教師:盧天明學生:時間2016年月日時段相似三角形的判定教學目
2025-04-17 07:43
【總結】......【一】知識梳理【1】比例①定義:四個量a,b,c,d中,其中兩個量的比等于另兩個量的比,那么這四個量成比例②形式:a:b=c:d,③性質:基本性質:ac=bd1、可以把比例式與等積式互
2025-03-25 06:30
【總結】第一篇:相似三角形教案 相似三角形 【基礎知識精講】 1.理解相似三角形的意義,會利用定理判定兩個三角形相似,并能掌握相似三角形與全等三角形的關系. 2.進一步體會數學內容之間的內在聯系,初步...
2024-10-29 06:48
【總結】1.如圖,在△ABC中,D是BC上一點,E是AD上一點,且=,∠BAD=∠ACE.(1)求證:AC2=BC·CD;(2)若E是△ABC的重心,求的值.2.已知△ABC中,AB=AC=5,BC=8,點D在BC邊上移動,連接AD,將△ADC沿直線AD翻折,點C的對應點為C1.(1)當AC1⊥BC時,CD的長是多少?(2)設C
2025-03-25 06:32
【總結】相似三角形說課稿各位評委,各位老師:大家好,我是趙勇連。今天我講的內容是義務教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)《相似三角形》。我將從五個方面進行我的說課。一、教材分析(一)、教材所處的地位和作用:《相似三角形?》是義務教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)內容。在此之前,學生已學習了線段的比,形狀相同的圖形及相似多邊形
2024-08-29 19:21
【總結】......相似三角形綜合培優(yōu)題型基礎知識點梳理:知識點1有關相似形的概念(1)形狀相同的圖形叫相似圖形,在相似多邊形中,最簡單的是相似三角形.(2)如果兩個邊數相同的多邊形的對應角相等,
2025-06-25 00:16
【總結】九、如下圖,△ABC中,AD∥BC,連結CD交AB于E,且AE∶EB=1∶3,過E作EF∥BC,交AC于F,S△ADE=2cm2,求S△BCE,S△AEF.十一、下圖中,E為平行四邊形ABCD的對角線AC上一點,AE∶EC=1∶3,BE的延長線交CD的延長線于G,交AD于F,求證:BF∶FG=1∶2. 26.(2010年長沙)如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸和y
2025-03-25 06:31
【總結】1、什么叫做相似三角形?2、你有幾種方法判定兩個三角形有相似三角形?對應邊成比例,對應角相等的三角形是相似三角形。兩個三角形相似,除了對應邊成比例、對應角相等之外,還可以得到許多有用的結論.例如,在圖24.3.9中,△ABC和△A′B′C′是兩個相似三角形,相似比為k,其中AD、A′D′分別為BC、B′C′邊上
2024-11-24 13:48
【總結】相似三角形應用舉例(2)1、張華同學的身高為,某一時刻他在陽光下的影子長為2m,與他鄰近的一棵樹的影子長為6m,則這棵樹的高為()A.B.C.D.復習復習相似三角形的應用:利用三角形的相似,解決不能直接
2024-08-10 17:44
【總結】第二十七章相似相似三角形應用舉例(2)一、新課引入利用相似可以解決生活中的問題,計量一些無法直接測量的物體的長度.解題的關鍵在于構建相似三角形.例5左、右并排的兩棵大樹的高分別是AB=8m和CD=12m,兩樹根部的距離BD=51.6m的人沿著正對這兩棵樹的一條水平直路L從左向
【總結】分組分享活動:利用相似三角形的有關知識測量旗桿的高度,自主學習教材P103-104?方法1:利用陽光下的影子:同一時刻的物高和影長CAEBD∴=ABEBCDBD即=人高物高人影物影∵太陽的光線是平行的∴AE∥CB∴∠AEB=
2024-08-24 21:08
【總結】相似三角形的性質(2)ABCEFG相似三角形的性質對應角相等對應邊成比例對應高對應中線對應角平分線周長比等于相似比面積比等于相似比的平方的比等于相似比1、兩個相似三角形的一對對應高分
2024-11-09 01:48
【總結】專題課堂(六)相似三角形思想方法第23章圖形的相似一、數形結合思想【例1】如圖,在平面直角坐標系中,A(1,0),B(3,0),C(0,3),D(2,-1),P(2,2).(1)△ABC與△ADP相似嗎?請說明理由;(2)在圖中標出點D關于y軸的對稱點D′,連結AD′,CD′,判斷△A
【總結】ABCEF如圖,在正方形ABCD中,E為BC上任意一點(與B、C不重合)∠AEF=90°.觀察圖形:D△ABE與△ECF是否相似?并證明你的結論?!鰽BE∽△ECF問題1:(1)點E為BC上任意一點,若∠B=∠C=60°,∠AEF=∠
【總結】相似三角形的判定(說課稿)南漳縣高級中學陳應宏一、教材分析二、教學方法三、學法指導四、教學過程五、教學評價一、教材分析(一)、教材的地位和作用“探索相似三角形的條件”既是三角形基本概念和性質的延伸和全等三角形的拓展,又是今后證明線段成比例,研究相似多邊形性質的重要工具.因此是
2025-07-20 04:14