freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

傅立葉變換的由來-文庫吧

2025-06-12 12:47 本頁面


【正文】 大,我們無法把一個(gè)長度無限的信號(hào)組合成長度有限的信號(hào)。面對(duì)這種困難,方法是把長度有限的信號(hào)表示成長度無限的信號(hào),可以把信號(hào)無限地從左右進(jìn)行延伸,延伸的部分用零來表示,這樣,這個(gè)信號(hào)就可以被看成是非周期性離散信號(hào),我們就可以用到離散時(shí)域傅立葉變換的方法。還有,也可以把信號(hào)用復(fù)制的方法進(jìn)行延伸,這樣信號(hào)就變成了周期性離散信號(hào),這時(shí)我們就可以用離散傅立葉變換方法進(jìn)行變換。這里我們要學(xué)的是離散信號(hào),對(duì)于連續(xù)信號(hào)我們不作討論,因?yàn)橛?jì)算機(jī)只能處理離散的數(shù)值信號(hào),我們的最終目的是運(yùn)用計(jì)算機(jī)來處理信號(hào)的。但是對(duì)于非周期性的信號(hào),我們需要用無窮多不同頻率的正弦曲線來表示,這對(duì)于計(jì)算機(jī)來說是不可能實(shí)現(xiàn)的。所以對(duì)于離散信號(hào)的變換只有離散傅立葉變換(DFT)才能被適用,對(duì)于計(jì)算機(jī)來說只有離散的和有限長度的數(shù)據(jù)才能被處理,對(duì)于其它的變換類型只有在數(shù)學(xué)演算中才能用到,在計(jì)算機(jī)面前我們只能用DFT方法,后面我們要理解的也正是DFT方法。這里要理解的是我們使用周期性的信號(hào)目的是為了能夠用數(shù)學(xué)方法來解決問題,至于考慮周期性信號(hào)是從哪里得到或怎樣得到是無意義的。每種傅立葉變換都分成實(shí)數(shù)和復(fù)數(shù)兩種方法,對(duì)于實(shí)數(shù)方法是最好理解的,但是復(fù)數(shù)方法就相對(duì)復(fù)雜許多了,需要懂得有關(guān)復(fù)數(shù)的理論知識(shí),不過,如果理解了實(shí)數(shù)離散傅立葉變換(real DFT),再去理解復(fù)數(shù)傅立葉就更容易了,所以我們先把復(fù)數(shù)的傅立葉放到一邊去,先來理解實(shí)數(shù)傅立葉變換,在后面我們會(huì)先講講關(guān)于復(fù)數(shù)的基本理論,然后在理解了實(shí)數(shù)傅立葉變換的基礎(chǔ)上再來理解復(fù)數(shù)傅立葉變換。還有,這里我們所要說的變換(transform)雖然是數(shù)學(xué)意義上的變換,但跟函數(shù)變換是不同的,函數(shù)變換是符合一一映射準(zhǔn)則的,對(duì)于離散數(shù)字信號(hào)處理(DSP),有許多的變換:傅立葉變換、拉普拉斯變換、Z變換、希爾伯特變換、離散余弦變換等,這些都擴(kuò)展了函數(shù)變換的定義,允許輸入和輸出有多種的值,簡單地說變換就是把一堆的數(shù)據(jù)變成另一堆的數(shù)據(jù)的方法。四、傅立葉變換的物理意義傅立葉變換是數(shù)字信號(hào)處理領(lǐng)域一種很重要的算法。要知道傅立葉變換算法的意義,首先要了解傅立葉原理的意義。傅立葉原理表明:任何連續(xù)測(cè)量的時(shí)序或信號(hào),都可以表示為不同頻率的正弦波信號(hào)的無限疊加。而根據(jù)該原理創(chuàng)立的傅立葉變換算法利用直接測(cè)量到的原始信號(hào),以累加方式來計(jì)算該信號(hào)中不同正弦波信號(hào)的頻率、振幅和相位。和傅立葉變換算法對(duì)應(yīng)的是反傅立葉變換算法。該反變換從本質(zhì)上說也是一種累加處理,這樣就可以將單獨(dú)改變的正弦波信號(hào)轉(zhuǎn)換成一個(gè)信號(hào)。因此,可以說,傅立葉變換將原來難以處理的時(shí)域信號(hào)轉(zhuǎn)換成了易于分析的頻域信號(hào)(信號(hào)的頻譜),可以利用一些工具對(duì)這些頻域信號(hào)進(jìn)行處理、加工。最后還可以利用傅立葉反變換將這些頻域信號(hào)轉(zhuǎn)換成時(shí)域信號(hào)。從現(xiàn)代數(shù)學(xué)的眼光來看,傅里葉變換是一種特殊的積分變換。它能將滿足一定條件的某個(gè)函數(shù)表示成正弦基函數(shù)的線性組合或者積分。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換。在數(shù)學(xué)領(lǐng)域,盡管最初傅立葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特征?!比我狻暗暮瘮?shù)通過一定的分解,都能夠表示為正弦函數(shù)的線性組合的形式,而正弦函數(shù)在物理上是被充分研究而相對(duì)簡單的函數(shù)類:傅立葉變換是線性算子,若賦予適當(dāng)?shù)姆稊?shù),它還是酉算子;傅立葉變換的逆變換容易求出,而且形式與正變換非常類似;正弦基函數(shù)是微分運(yùn)算的本征函數(shù),從而使得線性微分方程的求解可以轉(zhuǎn)化為常系數(shù)的代數(shù)方程的求解。在線性時(shí)不變雜的卷積運(yùn)算為簡單的
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1