freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高一數(shù)學(xué)必修四三角函數(shù)與向量結(jié)合知識點(diǎn)練習(xí)題含答案-文庫吧

2025-06-09 19:41 本頁面


【正文】 得A角的正弦值,再根據(jù)角的范圍即可解決第(Ⅰ)小題;而第(Ⅱ)小題根據(jù)第(Ⅰ)小題的結(jié)果及A、B、C三個角的關(guān)系,結(jié)合三角民恒等變換公式將函數(shù)轉(zhuǎn)化為關(guān)于角B的表達(dá)式,再根據(jù)B的范圍求最值.【解】 (Ⅰ)∵、共線,∴(2-2sinA)(1+sinA)=-(cosA+sinA)(cosA-sinA),則sin2A=,又A為銳角,所以sinA=,則A=.(Ⅱ)y=2sin2B+cos=2sin2B+cos=2sin2B+cos(-2B)=1-cos2B+cos2B+sin2B=sin2B-cos2B+1=sin(2B-)+1.∵B∈(0,),∴2B-∈(-,),∴2B-=,解得B=,ymax=2.【點(diǎn)評】 本題主要考查向量共線(平行)的充要條件、:(1)利用向量共線的充要條件將向量問題轉(zhuǎn)化為三角函數(shù)問題;(2),由于在三角函數(shù)中角是自變量,因此解決三角函數(shù)問題確定角的范圍就顯得至關(guān)重要了.題型三 三角函數(shù)與平面向量垂直的綜合此題型在高考中是一個熱點(diǎn)問題,解答時與題型二的解法差不多,也是首先利用向量垂直的充要條件將向量問題轉(zhuǎn)化為三角問題,、轉(zhuǎn)化的思想等.【例3】 已知向量=(3sinα,cosα),=(2sinα,5sinα-4cosα),α∈(,2π),且⊥.(Ⅰ)求tanα的值;(Ⅱ)求cos(+)的值.【分析】 第(Ⅰ)小題從向量垂直條件入手,建立關(guān)于α的三角方程,再利用同角三角函數(shù)的基本關(guān)系可求得tanα的值;第(Ⅱ)小題根據(jù)所求得的tanα的結(jié)果,利用二倍角公式求得tan的值,再利用兩角和與差的三角公式求得最后的結(jié)果.【解】?。á瘢摺停啵?.而=(3sinα,cosα),=(2sinα, 5sinα-4cosα),故=6sin2α+5s
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1