【總結(jié)】第四章拉普拉斯變換本章要點(diǎn)拉氏變換的定義——從傅立葉變換到拉氏變換拉氏變換的性質(zhì),收斂域連續(xù)時(shí)間系統(tǒng)響應(yīng)的求解(S域)系統(tǒng)函數(shù)和單位沖激響應(yīng)系統(tǒng)的零極點(diǎn)§拉氏變換的定義主要內(nèi)容重點(diǎn)難點(diǎn)定義的引出拉氏正變換的推導(dǎo)拉氏反變換的推導(dǎo)拉氏變換的物理意義
2025-02-17 10:50
【總結(jié)】......復(fù)變函數(shù)復(fù)習(xí)重點(diǎn)(一)復(fù)數(shù)的概念:,是實(shí)數(shù),..注:一般兩個(gè)復(fù)數(shù)不比較大小,但其模(為實(shí)數(shù))有大小. 1)模:;2)幅角:在時(shí),矢量與軸正向的夾角,記為(多值函數(shù));主值是位于中的幅
2025-04-17 12:45
【總結(jié)】....復(fù)變函數(shù)與積分變換(修訂版)主編:馬柏林(復(fù)旦大學(xué)出版社)——課后習(xí)題答案
2025-06-18 08:15
【總結(jié)】《復(fù)變函數(shù)與積分變換》作業(yè)參考答案習(xí)題1:4、計(jì)算下列各式(1)3i(3i)(1+3i)?;(3)23(3i)?;(5)13i2z??,求2z,3z,4z;(7)61?。解:(1)3i(3i)(1+3i)=3i(3+3ii+3)
2025-06-03 05:07
【總結(jié)】11.(5)復(fù)數(shù)z與點(diǎn)(,)xy對(duì)應(yīng),請(qǐng)依次寫(xiě)出z的代數(shù)、幾何、三角、指數(shù)表達(dá)式和z的3次方根。2.(6)請(qǐng)指出指數(shù)函數(shù)zew?、對(duì)數(shù)函數(shù)zwln?、正切函數(shù)zwtan?的解析域,并說(shuō)明它們的解析域是哪類點(diǎn)集。3.(9)討論函數(shù)22i
2025-01-08 21:03
【總結(jié)】復(fù)變函數(shù)復(fù)習(xí)重點(diǎn)(一)復(fù)數(shù)的概念:zxiy??,,xy是實(shí)數(shù),????Re,Imxzyz??.21i??.注:一般兩個(gè)復(fù)數(shù)不比較大小,但其模(為實(shí)數(shù))有大小.1)模:22zxy??;2)幅角:在0z?時(shí),矢量與x軸正向的夾角,記為??Argz(多值函數(shù));主值?
2025-01-08 19:36
【總結(jié)】復(fù)變函數(shù)與積分變換習(xí)題解答練習(xí)一1.求下列各復(fù)數(shù)的實(shí)部、虛部、模與幅角。35(1);解:=(2)解:2.將下列復(fù)數(shù)寫(xiě)成三角表示式。1)解:(2)解:3.利用復(fù)數(shù)的三角表示計(jì)算下列各式。(1)解:(2)解:z3z2z1+z2
2025-03-25 00:17
【總結(jié)】......復(fù)變函數(shù)與積分變換自測(cè)題1:第一章至第三章1、已知函數(shù)f(z)在z0處連續(xù),且f(z0)≠:存在z0的某個(gè)鄰域,f(z)在其中處處不為0.2、試將1-cosθ+isinθ化為指數(shù)形式。3、計(jì)算(3+
【總結(jié)】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換本講介紹拉氏變換的基本性質(zhì),它們?cè)诶献儞Q的實(shí)際應(yīng)用中都是很有用的.為方便起見(jiàn),假定在這些性質(zhì)中,凡是要求拉氏變換的函數(shù)都滿足拉氏變換存在定理的條件,并且把這些函數(shù)的增長(zhǎng)指數(shù)都統(tǒng)一地取為c,在證明性質(zhì)時(shí)不再重述這些條
2025-07-31 08:54
【總結(jié)】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換Laplace變換的應(yīng)用對(duì)一個(gè)系統(tǒng)進(jìn)行分析和研究,首先要知道該系統(tǒng)的數(shù)學(xué)模型,也就是要建立該系統(tǒng)特性的數(shù)學(xué)表達(dá)式.所謂線性系統(tǒng),在許多場(chǎng)合,它的數(shù)學(xué)模型可以用一個(gè)線性微分方程來(lái)描述,或者說(shuō)是滿足疊加原理的一類
2025-08-20 01:30
【總結(jié)】復(fù)變函數(shù)與積分變換(修訂版)課后答案(復(fù)旦大學(xué)出版社) 復(fù)變函數(shù)與積分變換(修訂版)主編:馬柏林(復(fù)旦大學(xué)出版社)——課后習(xí)題答案37/37習(xí)題一1.用復(fù)數(shù)的代
2025-06-25 20:03
【總結(jié)】《復(fù)變函數(shù)與積分變換》教學(xué)大綱課程名稱:復(fù)變函數(shù)與積分變換FunctionsofComplexVariables&IntegralTransformations?課程性質(zhì):專業(yè)基礎(chǔ)課學(xué)分:3總學(xué)時(shí):48學(xué)時(shí),其中,理論學(xué)時(shí):48學(xué)時(shí),實(shí)驗(yàn)(上機(jī))學(xué)時(shí):0學(xué)時(shí),適用專業(yè):通信工程、電子信息工程等專業(yè)
2025-04-17 00:24
【總結(jié)】第四章關(guān)漢卿第一節(jié)關(guān)漢卿的生平及其著作?鐘嗣成《錄鬼簿》把關(guān)漢卿列為元雜劇作家第一名。?賈仲明在為關(guān)漢卿補(bǔ)寫(xiě)的吊詞中說(shuō):“珠璣語(yǔ)唾自然流,金玉詞源即便有,玲瓏肺腑天生就。風(fēng)月情,忒慣熟,姓名香四大神物(州)。驅(qū)梨園領(lǐng)袖,總編修師首,捻雜劇班頭?!?元人周德清說(shuō):“樂(lè)府之盛、之備、之難,莫如今時(shí)。…
2025-01-04 13:56
【總結(jié)】§1-5初等解析函數(shù)?,2,1,0,)62?????keezikz?證明性質(zhì)4))exp(expexp2121zzzz???證明:,,222111iyxziyxz????設(shè)21expexpzz??左端)sin(cos)sin(cos221121yiyeyiye
2025-01-19 07:58
【總結(jié)】第四章數(shù)值微積分?Newton-Cotes型求積公式?復(fù)化求積公式?Gauss型求積公式?數(shù)值微分§1.引言求函數(shù)在給定區(qū)間上的定積分,在高等數(shù)學(xué)教程中已給出了許多有效的方法。但在實(shí)際問(wèn)題中,往往僅給出函數(shù)在一些離散點(diǎn)的值,它的解析表達(dá)式?jīng)]有明顯的給出;或者,雖然給出解析
2024-10-17 11:50