freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年全國數(shù)學建模比賽優(yōu)秀論文(已改無錯字)

2022-12-14 17:30:04 本頁面
  

【正文】 證明和比例差異,更加說明堵塞車道的不同對橫斷面積的實際通行能力存在著顯著的差異。 五 、 問題三的分析和求解 問題三的分析 對于問題三,需要先分析出交通事故的路段車輛排隊長度與事故橫斷面實際通行能力、事故持續(xù)時間,路段上游車流量三者之間的關(guān)系, 綜合多方面的資料和數(shù)學模型,選定多元線性回歸這一模型。 在選定模型之前先將我們所需的排隊長度求出來,排隊長度就是根據(jù)上游路口進來的車輛和事故發(fā)生點出去的車輛的差值,堵塞程度較深的那一段的堵塞密度,堵塞程度較淺的那一段堵塞密度來算出。然后 假設(shè)排隊長度和橫斷面實際通行能力,事故持續(xù)時間,路段上游車流量的回歸方程,然后運用最小二乘法判斷這個回歸方程是否成立,運用 SPSS 軟件得出這一回歸方程成立,再根據(jù)多元線性回歸的 原理 ,結(jié)合 SPSS 軟件,將所需的相關(guān)系數(shù)都求出來,可以得出一個回歸方程,就是用這個回歸方程來表達排隊 13 長度和事故橫斷面實際通行能力、事故持續(xù)時間、路段上游車流量的多元線性關(guān)系。 模型簡介 開始判斷對于本問所假設(shè)的多元線性回歸方程是否成立,選用最小二乘法并結(jié)合SPSS 軟件對這一回歸方程進行分析。 排隊長度的計算公式: 11( ) ( )i i j my x k s k L s? ? ? ? 最小二乘法的原理 最小二乘法是一種數(shù)學優(yōu)化技術(shù),是為了解決如何從一組測量值中尋求可信賴值得問題。最小二乘法的基本原理是:成對等精度地測得一組數(shù)據(jù) ? ?, 1, 2, 3 ,iix y i n? ???,試找出一條最佳的擬合曲線,使得這條擬合曲線的各點的值與測量值的差的平方和在所有擬合曲線中最小。 多元線性回歸原理 多元線性回歸就是分析一個自變量和若干個因變量的相關(guān)關(guān)系。回歸分析是一種處理變量的統(tǒng)計相關(guān)關(guān)系的一種數(shù)理統(tǒng)計方法?;?歸分析的基本思想是:雖然自變量和因變量之間沒有嚴格的、確定性的函數(shù)關(guān)系,但是可以設(shè)法找出最能代表他們之間關(guān)系的數(shù)學表達形式。 多元線性回歸模型的一般形式: ? ?0 1 1 2 2 3 3 1 , 2 , ,kky x x x x i n? ? ? ? ?? ? ? ? ? ??? ? ? ??? 其中,影響 y 的因素有 12, , ,kx x x k??? 個因素。 y 為可觀察的隨機變量,稱為因變量。12,kx x x??? 為非隨機的可精確觀察的變量,稱為自變量或因子, 0, k????? 為 k+1 個未知參數(shù), ? ?20,N??為隨機誤差。為了估計未知參數(shù) 0, k????? 及 2? ,我們對 y與 12,kx x x??? 同時作 n次觀察(試驗)得 n組觀察值 ? ?1,t t ty x x??? , t=1, 2,、 n( nk+1)它們滿足關(guān)系式 ? ?0 1 1 2 2 1 , 2 , ,t t t k tk ty x x x t n? ? ? ? ?? ? ? ? ??? ? ? ? ??? 其中 1,n????? 互不 相關(guān)且均是與 ? 同分布的隨機變量,我們稱公式( 2 2 )為多元線性回歸模型。建立在多元線性回歸模型基礎(chǔ)上的統(tǒng)計分析稱為多元線性回歸分析。有的模型通過數(shù)量變換即可變?yōu)榫€性化的回歸模型,如 20 1 1 2 1t t t ty x x? ? ? ?? ? ? ? 該模型只要通過數(shù)量變換 221ttxx? ,即可化為線性回歸分析模型,從而在擾動項滿足古典假設(shè)條件下,是可以進行普通最小二乘法估計的。 排隊長度的計算 排隊長度 計算公式: ( ) ( ) 1 1( ) ( )t t j mY X k s k L s? ? ? ? 通過進出口的車輛數(shù)之間的差值,再加上堵塞密度來求出排隊長度, jk =3, mk =, 14 L=240 米 最小二乘法判定假設(shè)方程是否符合多元線性回歸 Step1 :先在視頻 1 中采取所需的數(shù)據(jù)源,選取的時間間隔是 30s,同時也要采取上游路段車流量的數(shù)據(jù),則可以得出一張在特定的時間段內(nèi),排隊長度,橫斷面實際通行能力,持續(xù)時間,上游路段 車流量之間的關(guān)系。如表 5 所示,(注:時間是從 16:42:47開始選取,取一分鐘的正中間) 表 5 排隊長度和實際通行能力,持續(xù)時間,上游路段車流量之間的關(guān)系 序列 號 1 2 3 4 5 6 7 8 9 10 11 排隊長度 14 13 17 14 15 15 18 24 27 31 31 實際通行能力 4 5 3 2 4 3 5 5 1 2 5 持續(xù)時間 3 0 0 0 0 0 0 1 3 1 1 上游路段車流量 107 67 91 130 然后假設(shè)我們所認為的多元線性回歸方程 1 2 3ty a bx cx dx? ? ? ? Step2 :運用 SPSS 模型進行最小二乘法的運算,得出結(jié)果,如圖 5 所示, 15 圖 5 最小二乘法的結(jié)果 由上圖 可以看出 Sig 這個值是等于 ,借此可得出前面的假設(shè)成立,排隊長度和橫斷面的實際通行能力,持續(xù)時間,路段上游車流量是屬于多元線性回歸,有一個特定的多元線性回歸方程。 多元線性回歸方程的求解 由于最小二乘法當中已經(jīng)驗證出所假設(shè)的方程是一個多元線性 回歸方程 ,運用 SPSS軟件進行分析,將所求得的結(jié)果進行進一步的詳細述說。 多元線性回歸結(jié)果分析 Step1:兩種模型進行比較,如圖 6 所示 : 圖 6 多元線性回歸方程的兩種模型 從上圖中可以看出模型 2 的調(diào)整 R 方 =,而模型 1 的調(diào)整 R 方比 要小,所以模型 2 更符合多元線性回歸方程。 Step2:因為在上圖 6 所示模型 2 更符合回歸方程,下圖 7 中模型 2 里的常量的Sig=,所以模型 2 中的常量要剔除。 16 圖 7 系數(shù)表 Step3 :從以上兩幅圖就可以 得出持續(xù)時間和上游車流量對排隊長度的影響具有顯著性,而實際通行能力不具有很大程度的影響。 所以最后得出持續(xù)時間的相關(guān)系數(shù)和上游標準車流量的相關(guān)系數(shù)分別為 , 最后所得的多元性先回歸方程為 235 4 .5 9 3 0 .1 3 5 4 .8 2 1y x x? ? ? 六 、 問題四的分析和求解 問題四的分析 問題四中把事故的發(fā)生點所處的橫斷面到上游路口的距離給了一個具體值,距離就是 140 米, 路段下游方向需求不變, 路段上游車流量為 1500pcu/h,事故發(fā)生時車輛初始排隊長度為零, 且事故持續(xù)不撤離 ,然后要求 求出車輛從事故發(fā)生點開始計時,直到車輛都排到了上游路口為止所需的時間。 在視頻 1中,會多次出現(xiàn) 120 米,在這個 120 米中,大概推算出在發(fā)生堵塞時,排隊所能達到的最大車輛數(shù),經(jīng)過多次比較,估算出在 120 米中排隊所達到的最大車輛數(shù)是 90pcu。再通過第一個問題中所求的實際通行能力求平均值,得到橫斷面的平均實際通行能力 ,然后根據(jù) 140 米的最大堵塞車輛數(shù)來求出上游車輛數(shù),最后求解出當隊伍排到上游路口時所需的時間。 模型簡介 140 米內(nèi)最大堵塞量: F=( Hh) *t H 為上
點擊復制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1