【總結(jié)】雙基限時練(二十)一、選擇題1.不等式-6x2-x+2≤0的解集為()A.{x|-23≤x≤12}B.{x|x≤-23,或x≥12}C.{x|x≥12}D.{x|x≤-23}解析由-6x2-x+2≤0,得6x2+x-2≥0,x≥12或x≤-23.答案B2.
2024-12-04 23:46
【總結(jié)】雙基限時練(二十六)一、選擇題1.設(shè)變量x,y滿足約束條件?????x≥0,y≥0,x+y≤1,則目標(biāo)函數(shù)z=x+2y的最大值為()A.0B.1C.2D.3解析不等式組表示的平面區(qū)域如圖所示,當(dāng)z=x+2y過(0,1)時z取得最大值2.答案C
2024-12-04 20:39
【總結(jié)】高中數(shù)學(xué)基本不等式的巧用1.基本不等式:≤(1)基本不等式成立的條件:a>0,b>0.(2)等號成立的條件:當(dāng)且僅當(dāng)a=b時取等號.2.幾個重要的不等式(1)a2+b2≥2ab(a,b∈R);(2)+≥2(a,b同號);(3)ab≤2(a,b∈R);(4)≥2(a,b∈R).3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè)a>0,b>0,則a,b的算術(shù)平均數(shù)為,幾何平均數(shù)
2025-04-04 05:08
【總結(jié)】§一元二次不等式的解法(1)教學(xué)目標(biāo)(一)教學(xué)知識點1.一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系.2.一元二次不等式的解法.(二)能力訓(xùn)練要求1.通過由圖象找解集的方法提高學(xué)生邏輯思維能力,滲透數(shù)形結(jié)合思想.2.提高運算(變形)能力.(三)德育滲透目標(biāo)滲透由具體到抽象思想.教學(xué)重點
2024-11-18 23:35
【總結(jié)】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-22 01:43
【總結(jié)】均值不等式如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當(dāng)時,當(dāng)abba222??1.指出定理適用范圍:Rba?,2.強調(diào)取“=”的
2025-03-13 05:16
【總結(jié)】1.(2020·江西卷)不等式|x-2x|x-2x的解集是()A.(0,2)B.(-∞,0)C.(2,+∞)D.(-∞,0)∪(0,+∞)解析:依題意知,x-2x0,∴0x2,故選A.答案:A2.(202
2024-11-15 03:18
【總結(jié)】第三章測試(時間:120分鐘滿分:150分)一、選擇題(5×10=50分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.已知集合M={x|x23
2024-12-05 01:55
【總結(jié)】?復(fù)習(xí)??a-b0ab?a-b=0a=b?a-bab?:?(1)比較兩個實數(shù)的大小,(2)推導(dǎo)不等式的性質(zhì),(3)不等式的證明,(4)解不等式的主要依據(jù)?
【總結(jié)】【金版學(xué)案】2021-2021學(xué)年高中數(shù)學(xué)第3章不等式章末知識整合蘇教版必修5題型1轉(zhuǎn)化與化歸思想的應(yīng)用例1若正數(shù)a,b滿足ab=a+b+3,求ab的取值范圍.分析:“范圍”問題是數(shù)學(xué)中的常見問題,一般可將“范圍”看成函數(shù)定義域、值域,或看成不等式的解集等.解析:方
2024-12-05 03:23
【總結(jié)】高中數(shù)學(xué)必修5__第二章《數(shù)列》復(fù)習(xí)知識點總結(jié)與練習(xí)(一)一.?dāng)?shù)列的概念與簡單表示法知識能否憶起1.?dāng)?shù)列的定義、分類與通項公式(1)數(shù)列的定義:①數(shù)列:按照一定順序排列的一列數(shù).②數(shù)列的項:數(shù)列中的每一個數(shù).(2)數(shù)列的分類:分類標(biāo)準(zhǔn)類型滿足條件項數(shù)有窮數(shù)列項數(shù)有限無窮數(shù)列項數(shù)無限項與項間的大小關(guān)系遞增數(shù)列an+1>
2025-04-17 12:49
【總結(jié)】第一篇:高中數(shù)學(xué)知識點:不等式的證明及應(yīng)用 不等式的證明及應(yīng)用 知識要點: 1.不等式證明的基本方法: ìa-b0?ab ?(1)比較法:ía-b=0?a=b ?a-b0?ab? ...
2024-11-06 18:11
【總結(jié)】不等式與不等式組一、知識結(jié)構(gòu)圖二、知識要點(一、)不等式的概念1、不等式:一般地,用不等符號(“<”“>”“≤”“≥”)表示大小關(guān)系的式子,叫做不等式,用“≠”表示不等關(guān)系的式子也是不等式。不等號主要包括:>、<、≥、≤、≠。2、不等式的解:使不等式左右兩邊成立的未知數(shù)的值,叫做不等式的解。3、不等式的解集:一個含有未知數(shù)的不等式的所有解,組
2025-06-24 19:20
【總結(jié)】【高考調(diào)研】2021年高中數(shù)學(xué)第三章不等式章末測試題(B)新人教版必修5一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.若a、b、c,d∈R,則下面四個命題中,正確的命題是()A.若ab,cb,則acB.若a-b,
2024-11-28 00:25
【總結(jié)】【高考調(diào)研】2021年高中數(shù)學(xué)第三章不等式章末測試題(A)新人教版必修5一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.給出以下四個命題:①若ab,則1abc2,則ab;③若a|b|,則a&