【摘要】復(fù)習(xí):1,00nnnnaaqnNqaa???????⑴{}成等比數(shù)列()(2)通項(xiàng)公式:)0(111?????qaqaann)0(1?????qaqaamnmn國際象棋盤內(nèi)麥子數(shù)“爆炸”傳說西塔發(fā)明了國際象棋而使國王十分高興,他決定要重賞西塔,西塔說:“
2024-12-07 19:35
【摘要】等比數(shù)列的前n項(xiàng)和第一課時(shí)::an=amqn-m2.通項(xiàng)公式:an=a1qn-1等比數(shù)列要點(diǎn)整理4.性質(zhì):若m、n、p、q∈N*,m+n=p+q,則am·an=ap·a
2024-12-08 12:17
【摘要】等比數(shù)列的前n項(xiàng)和(第一課時(shí))創(chuàng)設(shè)情境明總:在一個(gè)月中,我第一天給你一萬,以后每天比前一天多給你一萬元。林總:我第一天還你一分錢,以后每天還的錢是前一天的兩倍創(chuàng)設(shè)情境林總:哈哈!這么多錢!我可賺大了,我要是訂了兩個(gè)月,三個(gè)月那該多好?。」嫒绱藛?創(chuàng)設(shè)情境請你們幫林總分析一下
2024-12-07 15:04
【摘要】第一頁,編輯于星期六:點(diǎn)三十四分。,2.5等比數(shù)列的前n項(xiàng)和第一課時(shí)等比數(shù)列前n項(xiàng)和公式,第二頁,編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十四分。,第四...
2024-10-22 18:54
【摘要】2.等比數(shù)列的前n項(xiàng)和1.(1)等比數(shù)列的前n項(xiàng)和公式:當(dāng)q≠1時(shí),Sn=a1(1-qn)1-q或Sn=a1-anq1-q,當(dāng)q=1時(shí),Sn=na1.(2)已知數(shù)列{an}是等比數(shù)列,a1=3,公比q=2,則其前6項(xiàng)和S6=189.(3)已知數(shù)列{an}是等比數(shù)列,a1=
2024-12-28 13:12
【摘要】等比數(shù)列本節(jié)課為人教A版高中數(shù)學(xué)教材必修模塊五第二章第四節(jié)“等比數(shù)列”的第一課時(shí).下面,我將從教材分析、學(xué)法分析、教法分析、教學(xué)過程、教學(xué)問題診斷、預(yù)期效果等六個(gè)方面對(duì)本課時(shí)的教學(xué)設(shè)計(jì)進(jìn)行說明。一、教材分析教學(xué)內(nèi)容本課時(shí)的主要學(xué)習(xí)內(nèi)容是:理解等比數(shù)列的定義、等比數(shù)列的通項(xiàng)公式和等比中項(xiàng),并能運(yùn)用所學(xué)知識(shí)解決相關(guān)問題。教材特點(diǎn)
2024-12-28 07:03
【摘要】等比數(shù)列教學(xué)目標(biāo)知識(shí)與技能目標(biāo):;.過程與能力目標(biāo):;,會(huì)解決知道na,1a,q,n中的三個(gè),求另一個(gè)的問題.情感態(tài)度與價(jià)值觀通過生活中的大量實(shí)例,鼓勵(lì)學(xué)生積極思考,激發(fā)學(xué)生對(duì)知識(shí)的探究精神和嚴(yán)肅認(rèn)真的科學(xué)態(tài)度,培養(yǎng)學(xué)生的類比、歸納的能力通過對(duì)有關(guān)實(shí)際問題的解決,體現(xiàn)數(shù)學(xué)與實(shí)際生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)的興趣.
【摘要】知識(shí)回顧等比數(shù)列{an}的求和公式及推導(dǎo)方法。問題探究??也成等比數(shù)列。,,求證:,項(xiàng)和為的前:已知等比數(shù)列 探究142171471SSSSSSnann??等于多少?項(xiàng)的和,那么它前項(xiàng)的和等于,前項(xiàng)和等于:如果一個(gè)等比數(shù)列前 探究1550101052??證明。請間滿足怎樣的關(guān)系?并,,
2024-12-08 08:10
【摘要】知識(shí)回顧1.等比數(shù)列的定義;2.等比數(shù)列的通項(xiàng)公式;3.等比數(shù)列的中項(xiàng)公式;4.等比數(shù)列的下標(biāo)公式。問題探究????。和項(xiàng)的前,請推導(dǎo)等比數(shù)列公比為,中,前項(xiàng)為:等比數(shù)列 探究nnnSnaqaa1)(其中 請你證明:,都不為,,且:如果 探究*nnnn
【摘要】談一類遞推數(shù)列求通項(xiàng)公式的典型方法除了我們經(jīng)常接觸的最基本的等差數(shù)列和等比數(shù)列之外,我們還經(jīng)常遇到一類遞推數(shù)列求通項(xiàng)的問題.它的基本形式是:已知1a及遞推關(guān)系1nnapaq???((1)0)pqp??求na.其求解方法有多種,下面結(jié)合具體例子介紹三種較為典型的解法.題目:在數(shù)列{}na(不是常數(shù)數(shù)列)中,1122nn
2024-12-28 20:21
【摘要】主講老師:陳震等比數(shù)列的前n項(xiàng)和(一)復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項(xiàng)公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-01-22 11:53
【摘要】第2課時(shí) 等比數(shù)列前n項(xiàng)和的性質(zhì)及應(yīng)用課后篇鞏固探究A組{an}中,首項(xiàng)a1=3,前3項(xiàng)和為21,則a3+a4+a5等于( ) 解析由S3=a1(1+q+q2)=21,且a1=3,得q+q2-6=0,所以q=+a4+a5=q2(a1+a2+a3)=22·S3=84.答案C{an}的前n項(xiàng)和Sn=an-1(
2025-07-03 01:52
【摘要】第7課時(shí)等比數(shù)列的前n項(xiàng)和n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決有關(guān)等比數(shù)列的問題..印度的舍罕王打算獎(jiǎng)賞發(fā)明國際象棋的大臣西薩·班·達(dá)依爾,并問他想得到什么樣的獎(jiǎng)賞.大臣說:“陛下,請您在這張棋盤的第一個(gè)小格內(nèi)賞給我一粒麥子,在第二個(gè)小格內(nèi)給兩粒,在第三個(gè)小格
2024-12-28 02:37
【摘要】等比數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和公式的有關(guān)性質(zhì)解題.n項(xiàng)和公式解決實(shí)際問題.1.等比數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)公比q≠1時(shí),Sn=______________=_____;當(dāng)q=1時(shí),Sn=____________.2.等比數(shù)列前n項(xiàng)和的性質(zhì):(1)連續(xù)m項(xiàng)的和(如Sm、S
2024-12-25 10:13
【摘要】課題:等比數(shù)列的n項(xiàng)和概念班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程,理解前n項(xiàng)和公式的含義,并會(huì)用公式進(jìn)行有關(guān)計(jì)算【課前預(yù)習(xí)】1.推導(dǎo)公式:(1)研究633222221??????的計(jì)算;
2024-12-10 01:05