【摘要】第2課時等比數(shù)列的性質(zhì)1.復(fù)習(xí)鞏固等比數(shù)列的概念及其通項(xiàng)公式.2.掌握等比中項(xiàng)的應(yīng)用.3.掌握等比數(shù)列的性質(zhì),并能解決有關(guān)問題.121.等比數(shù)列的定義及通項(xiàng)公式12【做一做1】等比數(shù)列{an}的公比q=3,a1=13,則a5等于()
2024-11-17 19:03
【摘要】課時教學(xué)設(shè)計(jì)首頁授課教師:授課時間:10年9月8日課題課型新授課第幾課時1課時教學(xué)目標(biāo)(三維)1..理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法,體會轉(zhuǎn)化的思想;項(xiàng)和公式,并能運(yùn)用公式解決簡單的問題,用方程的思想認(rèn)識等比數(shù)列前項(xiàng)和公式,利用公式知三求
2025-08-18 16:48
【摘要】等比數(shù)列(第1課時)學(xué)習(xí)目標(biāo),理解等比數(shù)列的概念.,明確一個數(shù)列是等比數(shù)列的限定條件;能夠運(yùn)用類比的思想方法得到等比數(shù)列的定義,會推導(dǎo)等比數(shù)列的通項(xiàng)公式.合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境:定義:通項(xiàng)公式:an=a1+(n-1)d,(n∈N*).前n項(xiàng)和公式:Sn==na1+d,(n∈
2024-12-08 07:03
【摘要】數(shù)列求和之裂項(xiàng)相消法求和(一)教學(xué)目標(biāo):1知識與技能目標(biāo)掌握裂項(xiàng)相消法解決數(shù)列求和問題的基本思路、方法和適用范圍。進(jìn)一步熟悉數(shù)列求和的不同呈現(xiàn)形式及解決策略。2過程與方法目標(biāo)經(jīng)歷數(shù)列裂項(xiàng)相消求和法的探究過程、深化過程和推廣過程。培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。體會知識的發(fā)生、發(fā)展過程,培養(yǎng)學(xué)生的學(xué)習(xí)能力。
2024-11-28 20:55
【摘要】等比數(shù)列的前n項(xiàng)和(二)課時目標(biāo)n項(xiàng)和公式的有關(guān)性質(zhì)解題.n項(xiàng)和公式解決實(shí)際問題.1.等比數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)公比q≠1時,Sn=__________=__________;當(dāng)q=1時,Sn=_______.2.等比數(shù)列前n項(xiàng)和的性質(zhì):(1)連續(xù)m項(xiàng)的和(如Sm、S2
2024-12-05 06:35
【摘要】等比數(shù)列第二課時思考:我們知道,等差數(shù)列{an}滿足下列公式(1)an=am+(n-m)d(m、n、p、q∈N*);(2)若m+n=p+q,則am+an=ap+aq那么,等比數(shù)列是否也有類似的公式呢?一、復(fù)習(xí):2.通項(xiàng)公式:an=a1qn-1*11(2)(
2024-11-17 19:44
【摘要】【成才之路】2021年春高中數(shù)學(xué)第1章數(shù)列3等比數(shù)列第3課時等比數(shù)列的前n項(xiàng)和同步練習(xí)北師大版必修5一、選擇題1.設(shè)等比數(shù)列{an}的公比q=2,前n項(xiàng)和為Sn,則S4a2=()A.2B.4[答案]C[解析]S4=a11-q4
2024-12-05 06:37
【摘要】等比數(shù)列的前n項(xiàng)和(第一課時)等比數(shù)列的前n項(xiàng)和等比數(shù)列的前項(xiàng)和一、教材分析二、目標(biāo)分析三、過程分析四、教法分析五、評價(jià)分析一、教材分析一、教材分析1.從在教材中的地位與作用來看《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,
2024-11-09 12:46
【摘要】人民教育出版社高中《數(shù)學(xué)》第一冊(上)第三章等比數(shù)列前n項(xiàng)和公式教師:武占斌山西大同市第二中學(xué)校說課的四個環(huán)節(jié)?教材分析?教法選取?學(xué)法指導(dǎo)?教學(xué)程序一、教材分析1、教材背景分析:等比數(shù)列的前n項(xiàng)和等差數(shù)列等比數(shù)列通項(xiàng)、遞推公式求和數(shù)列
2025-05-10 08:13
【摘要】第3講等比數(shù)列及其前n項(xiàng)和【2022年高考會這樣考】1.以等比數(shù)列的定義及等比中項(xiàng)為背景,考查等比數(shù)列的判定.2.考查通項(xiàng)公式、前n項(xiàng)和公式以及性質(zhì)的應(yīng)用.【復(fù)習(xí)指導(dǎo)】本節(jié)復(fù)習(xí)時,緊扣等比數(shù)列的定義,推導(dǎo)相關(guān)的公式與性質(zhì),通過基本題型的訓(xùn)練,掌握通性、通法.基礎(chǔ)梳理1.等比數(shù)列的定義如果一個數(shù)列從
2025-04-30 04:33
【摘要】等比數(shù)列通項(xiàng)公式:等比數(shù)列的定義:等比數(shù)列的性質(zhì):各個格子里的麥粒數(shù)依次是發(fā)明者要求的麥粒總數(shù)就是1+2+23+…+263=國王能否滿足發(fā)明者的要求?1,2,22,…,263如何求出這個和式的具體數(shù)值呢?問題1:發(fā)明者要求的麥粒總數(shù)是:S64=1+2+22+…+263問題2:一般地,對于等比數(shù)列一般地
2025-08-05 15:48
【摘要】等比數(shù)列的前n項(xiàng)和(一)李超2020年9月(一)知識回顧::11???nnqaa:②在等比數(shù)列{}中,若則()naqpnm???qpnmaaaa?????Nqpnm
2024-09-28 12:18