【摘要】等比數(shù)列的前n項和第1課時一、新課導(dǎo)入:即,①,②②-①得即.由此對于一般的等比數(shù)列,其前項和,如何化簡?求數(shù)列:二.新課講解:Sn=a1+a1q+a1q2+…+a1qn-2+a1qn-1qSn=a1q+a1q
2024-10-16 20:25
【摘要】等比數(shù)列的前n項和古印度國王舍罕王打算獎賞國際象棋的發(fā)明人——宰相西薩·班·達(dá)依爾。國王問他想要什么,發(fā)明者說:“請在第一個格子里放上1粒麥子,在第二個格子里放上2粒麥子,在第三個格子里放上4粒麥子,在第四個格子里放上8粒麥子,依此類推,每個格子里放的麥粒數(shù)都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子
2025-07-21 17:18
【摘要】知識回顧1.等比數(shù)列的定義;2.等比數(shù)列的通項公式;3.等比數(shù)列的中項公式;4.等比數(shù)列的下標(biāo)公式。問題探究????。和項的前,請推導(dǎo)等比數(shù)列公比為,中,前項為:等比數(shù)列 探究nnnSnaqaa1)(其中 請你證明:,都不為,,且:如果 探究*nnnn
2025-03-12 14:53
【摘要】等比數(shù)列的前n項和目的要求?1.掌握等比數(shù)列的前n項和公式。?2.掌握前n項和公式的推導(dǎo)方法。?3.對前n項和公式能進(jìn)行簡單應(yīng)用。重點難點?重點:等比數(shù)列前n項和公式的推導(dǎo)與應(yīng)用。?難點:前n項和公式的推導(dǎo)思路的尋找。重點難點復(fù)
2024-11-17 17:13
【摘要】(1)教學(xué)目標(biāo)1.掌握等比數(shù)列的前n項和公式及公式證明思路.2.會用等比數(shù)列的前n項和公式解決有關(guān)等比數(shù)列前n項和的一些簡單問題.教學(xué)重點1. 等比數(shù)列的前n項和公式;2. 等比數(shù)列的前n項和公式推導(dǎo).教學(xué)難點靈活應(yīng)用公式解決有關(guān)問題
2025-06-07 16:48
【摘要】等比數(shù)列的前n項和第1課時一、新課導(dǎo)入:633222221???????S即,①646332222222???????S,②②-①得即.,12264???SS1264??S由此對于一般的等比數(shù)列,其前項和n112111??????nnqaqaqaaS
2025-08-16 01:37
【摘要】第一篇: 2.4等比數(shù)列 (一)教學(xué)目標(biāo) 1`.知識與技能:理解等比數(shù)列的概念;掌握等比數(shù)列的通項公式;理解這種數(shù)列的模型應(yīng)用. 2.過程與方法:通過豐富實例抽象出等比數(shù)列模型,經(jīng)歷由發(fā)現(xiàn)幾個...
2024-11-05 04:12
【摘要】數(shù)列求通項教學(xué)設(shè)計一、目標(biāo)分析使學(xué)生掌握等差、等比數(shù)列求通項的公式法,特殊數(shù)列求通項的累加、累乘法,一般數(shù)列已知前n項和求通項的做法和構(gòu)造新數(shù)列的一般方法。培養(yǎng)學(xué)生觀察、歸納能力,在學(xué)習(xí)過程中,體會歸納思想和化歸思想并加深認(rèn)識;通過累加、累乘及構(gòu)造等比數(shù)列的方法探究,培養(yǎng)學(xué)生分析探索能力,增強運用公式解決實際問題的能力等.
2024-11-18 15:56
【摘要】A等比數(shù)列等比數(shù)列×國際象棋起源于印度,關(guān)于國際象棋有這樣一個傳說,國王要獎勵國際象棋的發(fā)明者,問他有什么要求,發(fā)明者說:“請在棋盤上的第一個格子上放1粒麥子,第二個格子上放2粒麥子,第三個格子上放4粒麥子,第四個格子上放8粒麥子,依次類推,直到第64個格子放滿為止?!眹蹩犊卮饝?yīng)了他。
2025-08-05 19:27
【摘要】第2課時等比數(shù)列的性質(zhì)1.復(fù)習(xí)鞏固等比數(shù)列的概念及其通項公式.2.掌握等比中項的應(yīng)用.3.掌握等比數(shù)列的性質(zhì),并能解決有關(guān)問題.121.等比數(shù)列的定義及通項公式12【做一做1】等比數(shù)列{an}的公比q=3,a1=13,則a5等于()
2024-11-17 19:03
【摘要】課時教學(xué)設(shè)計首頁授課教師:授課時間:10年9月8日課題課型新授課第幾課時1課時教學(xué)目標(biāo)(三維)1..理解等比數(shù)列的前n項和公式的推導(dǎo)方法,體會轉(zhuǎn)化的思想;項和公式,并能運用公式解決簡單的問題,用方程的思想認(rèn)識等比數(shù)列前項和公式,利用公式知三求
2025-08-18 16:48
【摘要】等比數(shù)列(第1課時)學(xué)習(xí)目標(biāo),理解等比數(shù)列的概念.,明確一個數(shù)列是等比數(shù)列的限定條件;能夠運用類比的思想方法得到等比數(shù)列的定義,會推導(dǎo)等比數(shù)列的通項公式.合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境:定義:通項公式:an=a1+(n-1)d,(n∈N*).前n項和公式:Sn==na1+d,(n∈
2024-12-08 07:03
【摘要】數(shù)列求和之裂項相消法求和(一)教學(xué)目標(biāo):1知識與技能目標(biāo)掌握裂項相消法解決數(shù)列求和問題的基本思路、方法和適用范圍。進(jìn)一步熟悉數(shù)列求和的不同呈現(xiàn)形式及解決策略。2過程與方法目標(biāo)經(jīng)歷數(shù)列裂項相消求和法的探究過程、深化過程和推廣過程。培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。體會知識的發(fā)生、發(fā)展過程,培養(yǎng)學(xué)生的學(xué)習(xí)能力。
2024-11-28 20:55
【摘要】等比數(shù)列的前n項和(二)課時目標(biāo)n項和公式的有關(guān)性質(zhì)解題.n項和公式解決實際問題.1.等比數(shù)列{an}的前n項和為Sn,當(dāng)公比q≠1時,Sn=__________=__________;當(dāng)q=1時,Sn=_______.2.等比數(shù)列前n項和的性質(zhì):(1)連續(xù)m項的和(如Sm、S2
2024-12-05 06:35
【摘要】等比數(shù)列第二課時思考:我們知道,等差數(shù)列{an}滿足下列公式(1)an=am+(n-m)d(m、n、p、q∈N*);(2)若m+n=p+q,則am+an=ap+aq那么,等比數(shù)列是否也有類似的公式呢?一、復(fù)習(xí):2.通項公式:an=a1qn-1*11(2)(
2024-11-17 19:44