【摘要】等比數(shù)列的前n項(xiàng)和古印度國(guó)王舍罕王打算獎(jiǎng)賞國(guó)際象棋的發(fā)明人——宰相西薩·班·達(dá)依爾。國(guó)王問(wèn)他想要什么,發(fā)明者說(shuō):“請(qǐng)?jiān)诘谝粋€(gè)格子里放上1粒麥子,在第二個(gè)格子里放上2粒麥子,在第三個(gè)格子里放上4粒麥子,在第四個(gè)格子里放上8粒麥子,依此類推,每個(gè)格子里放的麥粒數(shù)都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子
2025-07-21 17:18
【摘要】知識(shí)回顧1.等比數(shù)列的定義;2.等比數(shù)列的通項(xiàng)公式;3.等比數(shù)列的中項(xiàng)公式;4.等比數(shù)列的下標(biāo)公式。問(wèn)題探究????。和項(xiàng)的前,請(qǐng)推導(dǎo)等比數(shù)列公比為,中,前項(xiàng)為:等比數(shù)列 探究nnnSnaqaa1)(其中 請(qǐng)你證明:,都不為,,且:如果 探究*nnnn
2025-03-12 14:53
【摘要】等比數(shù)列的前n項(xiàng)和目的要求?1.掌握等比數(shù)列的前n項(xiàng)和公式。?2.掌握前n項(xiàng)和公式的推導(dǎo)方法。?3.對(duì)前n項(xiàng)和公式能進(jìn)行簡(jiǎn)單應(yīng)用。重點(diǎn)難點(diǎn)?重點(diǎn):等比數(shù)列前n項(xiàng)和公式的推導(dǎo)與應(yīng)用。?難點(diǎn):前n項(xiàng)和公式的推導(dǎo)思路的尋找。重點(diǎn)難點(diǎn)復(fù)
2025-11-08 17:13
【摘要】等比數(shù)列的前n項(xiàng)和第1課時(shí)一、新課導(dǎo)入:633222221???????S即,①646332222222???????S,②②-①得即.,12264???SS1264??S由此對(duì)于一般的等比數(shù)列,其前項(xiàng)和n112111??????nnqaqaqaaS
2025-08-16 01:37
【摘要】數(shù)列求通項(xiàng)教學(xué)設(shè)計(jì)一、目標(biāo)分析使學(xué)生掌握等差、等比數(shù)列求通項(xiàng)的公式法,特殊數(shù)列求通項(xiàng)的累加、累乘法,一般數(shù)列已知前n項(xiàng)和求通項(xiàng)的做法和構(gòu)造新數(shù)列的一般方法。培養(yǎng)學(xué)生觀察、歸納能力,在學(xué)習(xí)過(guò)程中,體會(huì)歸納思想和化歸思想并加深認(rèn)識(shí);通過(guò)累加、累乘及構(gòu)造等比數(shù)列的方法探究,培養(yǎng)學(xué)生分析探索能力,增強(qiáng)運(yùn)用公式解決實(shí)際問(wèn)題的能力等.
2025-11-09 15:56
【摘要】A等比數(shù)列等比數(shù)列×國(guó)際象棋起源于印度,關(guān)于國(guó)際象棋有這樣一個(gè)傳說(shuō),國(guó)王要獎(jiǎng)勵(lì)國(guó)際象棋的發(fā)明者,問(wèn)他有什么要求,發(fā)明者說(shuō):“請(qǐng)?jiān)谄灞P(pán)上的第一個(gè)格子上放1粒麥子,第二個(gè)格子上放2粒麥子,第三個(gè)格子上放4粒麥子,第四個(gè)格子上放8粒麥子,依次類推,直到第64個(gè)格子放滿為止。”國(guó)王慷慨地答應(yīng)了他。
2025-08-05 19:27
【摘要】第2課時(shí)等比數(shù)列的性質(zhì)1.復(fù)習(xí)鞏固等比數(shù)列的概念及其通項(xiàng)公式.2.掌握等比中項(xiàng)的應(yīng)用.3.掌握等比數(shù)列的性質(zhì),并能解決有關(guān)問(wèn)題.121.等比數(shù)列的定義及通項(xiàng)公式12【做一做1】等比數(shù)列{an}的公比q=3,a1=13,則a5等于()
2025-11-08 19:03
【摘要】課時(shí)教學(xué)設(shè)計(jì)首頁(yè)授課教師:授課時(shí)間:10年9月8日課題課型新授課第幾課時(shí)1課時(shí)教學(xué)目標(biāo)(三維)1..理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法,體會(huì)轉(zhuǎn)化的思想;項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題,用方程的思想認(rèn)識(shí)等比數(shù)列前項(xiàng)和公式,利用公式知三求
2025-08-18 16:48
【摘要】等比數(shù)列(第1課時(shí))學(xué)習(xí)目標(biāo),理解等比數(shù)列的概念.,明確一個(gè)數(shù)列是等比數(shù)列的限定條件;能夠運(yùn)用類比的思想方法得到等比數(shù)列的定義,會(huì)推導(dǎo)等比數(shù)列的通項(xiàng)公式.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境:定義:通項(xiàng)公式:an=a1+(n-1)d,(n∈N*).前n項(xiàng)和公式:Sn==na1+d,(n∈
2025-11-29 07:03
【摘要】等比數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和公式的有關(guān)性質(zhì)解題.n項(xiàng)和公式解決實(shí)際問(wèn)題.1.等比數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)公比q≠1時(shí),Sn=__________=__________;當(dāng)q=1時(shí),Sn=_______.2.等比數(shù)列前n項(xiàng)和的性質(zhì):(1)連續(xù)m項(xiàng)的和(如Sm、S2
2025-11-26 06:35
【摘要】等比數(shù)列第二課時(shí)思考:我們知道,等差數(shù)列{an}滿足下列公式(1)an=am+(n-m)d(m、n、p、q∈N*);(2)若m+n=p+q,則am+an=ap+aq那么,等比數(shù)列是否也有類似的公式呢?一、復(fù)習(xí):2.通項(xiàng)公式:an=a1qn-1*11(2)(
2025-11-08 19:44
【摘要】【成才之路】2021年春高中數(shù)學(xué)第1章數(shù)列3等比數(shù)列第3課時(shí)等比數(shù)列的前n項(xiàng)和同步練習(xí)北師大版必修5一、選擇題1.設(shè)等比數(shù)列{an}的公比q=2,前n項(xiàng)和為Sn,則S4a2=()A.2B.4[答案]C[解析]S4=a11-q4
2025-11-26 06:37
【摘要】等比數(shù)列的前n項(xiàng)和(第一課時(shí))等比數(shù)列的前n項(xiàng)和等比數(shù)列的前項(xiàng)和一、教材分析二、目標(biāo)分析三、過(guò)程分析四、教法分析五、評(píng)價(jià)分析一、教材分析一、教材分析1.從在教材中的地位與作用來(lái)看《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,
2025-10-31 12:46
【摘要】人民教育出版社高中《數(shù)學(xué)》第一冊(cè)(上)第三章等比數(shù)列前n項(xiàng)和公式教師:武占斌山西大同市第二中學(xué)校說(shuō)課的四個(gè)環(huán)節(jié)?教材分析?教法選取?學(xué)法指導(dǎo)?教學(xué)程序一、教材分析1、教材背景分析:等比數(shù)列的前n項(xiàng)和等差數(shù)列等比數(shù)列通項(xiàng)、遞推公式求和數(shù)列
2025-05-10 08:13
【摘要】第3講等比數(shù)列及其前n項(xiàng)和【2022年高考會(huì)這樣考】1.以等比數(shù)列的定義及等比中項(xiàng)為背景,考查等比數(shù)列的判定.2.考查通項(xiàng)公式、前n項(xiàng)和公式以及性質(zhì)的應(yīng)用.【復(fù)習(xí)指導(dǎo)】本節(jié)復(fù)習(xí)時(shí),緊扣等比數(shù)列的定義,推導(dǎo)相關(guān)的公式與性質(zhì),通過(guò)基本題型的訓(xùn)練,掌握通性、通法.基礎(chǔ)梳理1.等比數(shù)列的定義如果一個(gè)數(shù)列從
2025-04-30 04:33