【摘要】數(shù)學(xué)歸納法應(yīng)用舉例例1.用數(shù)學(xué)歸納法證明:2222(1)(21)1236nnnn???????證明:(1)當(dāng)n=1時(shí),左邊=1,右邊=1,等式成立;(2)假設(shè)當(dāng)n=k時(shí),等式成立,即2222(1)(21)1236kkkk???????那么
2024-12-08 01:21
【摘要】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案推理與證明數(shù)學(xué)歸納法(2)【學(xué)習(xí)目標(biāo)】1.了解數(shù)學(xué)歸納法的原理,并能以遞推思想作指導(dǎo),理解數(shù)學(xué)歸納法的操作步驟;2.能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題,并能嚴(yán)格按照數(shù)學(xué)歸納法證明問(wèn)題的格式書寫;3.數(shù)學(xué)歸納法中遞推思想的理解.【自主學(xué)習(xí)】復(fù)習(xí)1:數(shù)學(xué)歸納
2024-12-09 20:35
【摘要】數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法是一種證明與正整數(shù)有關(guān)的數(shù)學(xué)命題的重要方法.主要有兩個(gè)步驟一個(gè)結(jié)論:【歸納奠基】(1)證明當(dāng)n取第一個(gè)值n0(如n0=1或2等)時(shí)結(jié)論正確(2)假設(shè)n=k(k≥n0,n∈N*)時(shí)結(jié)論正確,證明n=k+1時(shí)結(jié)論也正確(3)由(1)、(2)得出結(jié)論【歸納遞推】
2024-12-07 05:48
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章4數(shù)學(xué)歸納法課時(shí)作業(yè)北師大版選修2-2一、選擇題1.用數(shù)學(xué)歸納法證明等式1+2+3+?+(n+3)=n+n+2(n∈N+)時(shí),驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是()A.1B.1+2C.1+2+3D.1+2+3+4
2024-12-25 01:48
【摘要】§定積分1.曲邊梯形的面積課時(shí)目標(biāo)通過(guò)求曲邊梯形的面積和變速直線運(yùn)動(dòng)的路程,了解定積分概念建立的背景,借助于幾何直觀體會(huì)定積分的基本思想.1.曲邊梯形:由直線x=a,x=b(a≠b),y=0和曲線y=f(x)所圍成的圖形稱為曲邊梯形.2.計(jì)算曲邊梯形面積的方法:把區(qū)間[
2024-12-25 09:28
【摘要】微積分基本定理課時(shí)目標(biāo).積分.微積分基本定理對(duì)于被積函數(shù)f(x),如果F′(x)=f(x),那么?baf(x)dx=__________,即?baF′(x)dx=__________.一、填空題1.22(1cos)xdx?????=________.2.若?10
2024-12-24 20:01
【摘要】(1)對(duì)于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法.歸納法{完全歸納法不完全歸納法由特殊一般特點(diǎn):a2=a1+da3=a1+2da4=a1+3d……an=a1+(n-1)d如何證明:1+3+5+…+(2n-1)=
2024-12-08 15:24
【摘要】極大值與極小值課時(shí)目標(biāo)(小)值的概念.,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件.、極小值.1.若函數(shù)y=f(x)在點(diǎn)x=a的函數(shù)值f(a)比它在點(diǎn)x=a附近其他點(diǎn)的函數(shù)值都小,f′(a)=0,而且在點(diǎn)x=a附近的左側(cè)________,右側(cè)________.類似地,函數(shù)y=f(
2024-12-25 09:29
【摘要】第2課時(shí)課時(shí)目標(biāo).度及瞬時(shí)變化率定義求物體在某一時(shí)刻的瞬時(shí)速度及瞬時(shí)變化率.,掌握求函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的方法.數(shù)的概念,會(huì)求一個(gè)函數(shù)的導(dǎo)數(shù).1.瞬時(shí)速度的概念作變速直線運(yùn)動(dòng)的物體在不同時(shí)刻的速度是不同的,把物體在某一時(shí)刻的速度叫____________.用數(shù)學(xué)語(yǔ)言描述為:如果當(dāng)Δt無(wú)限趨近于
【摘要】PK!宻燾?[Content_Types].xml?(?
2024-12-25 06:36
【摘要】間接證明雙基達(dá)標(biāo)?限時(shí)20分鐘?1.否定“自然數(shù)a、b、c中恰有一個(gè)偶數(shù)”時(shí)正確的反設(shè)為____________________.解析恰有一個(gè)偶數(shù)的否定有兩種情況,其一是無(wú)偶數(shù)(全為奇數(shù)),其二是至少有兩個(gè)偶數(shù).答案a、b、c中或都是奇數(shù)或至少有兩個(gè)偶數(shù)2.用反證法證明一個(gè)命題時(shí),下列說(shuō)法正確的
2024-12-24 20:00
【摘要】§數(shù)學(xué)歸納法(二)一、基礎(chǔ)過(guò)關(guān)1.用數(shù)學(xué)歸納法證明等式1+2+3+?+(n+3)=?n+3??n+4?2(n∈N*),驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是________.2.用數(shù)學(xué)歸納法證明“2nn2+1對(duì)于n≥n0的自然數(shù)n都成立”時(shí),第一步證明中的起始值n0應(yīng)取___
2024-12-24 23:42
【摘要】§數(shù)學(xué)歸納法(一)一、基礎(chǔ)過(guò)關(guān)1.一個(gè)與正整數(shù)n有關(guān)的命題,當(dāng)n=2時(shí)命題成立,且由n=k時(shí)命題成立可以推得n=k+2時(shí)命題也成立,則下列說(shuō)法正確的是________.①該命題對(duì)于n2的自然數(shù)n都成立②該命題對(duì)于所有的正偶數(shù)都成立③該命題何時(shí)成立與k取值無(wú)關(guān)2.用數(shù)學(xué)
【摘要】§導(dǎo)數(shù)的運(yùn)算常見函數(shù)的導(dǎo)數(shù)課時(shí)目標(biāo),進(jìn)一步理解運(yùn)用概念求導(dǎo)數(shù)的方法.見函數(shù)的導(dǎo)數(shù)公式..1.幾個(gè)常用函數(shù)的導(dǎo)數(shù):(kx+b)′=______(k,b為常數(shù));C′=______(C為常數(shù));(x)′=______;(x2)′=______;(x3)′
【摘要】§導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.單調(diào)性課時(shí)目標(biāo)掌握導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系,會(huì)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過(guò)三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間.1.導(dǎo)函數(shù)的符號(hào)與函數(shù)的單調(diào)性的關(guān)系:如果在某個(gè)區(qū)間內(nèi),函數(shù)y=f(x)的導(dǎo)數(shù)________,則函數(shù)y=f(x)這個(gè)區(qū)間上是增函數(shù);如果在某個(gè)區(qū)