【摘要】第二章習(xí)題解答1. 設(shè)與分別是隨機(jī)變量X與Y的分布函數(shù),為使是某個隨機(jī)變量的分布函數(shù),則的值可取為(A). A. B. C. D.2.解:因為隨機(jī)變量={這4個產(chǎn)品中的次品數(shù)}的所有可能的取值為:0,1,2,3,4.且;;;;.因此所求的分布律為:X01
2025-07-09 21:00
【摘要】概率論第4章習(xí)題參考解答 1.,求射擊10炮,命中3炮的概率,至少命中3炮的概率,最可能命中幾炮. 解:設(shè)ξ為射擊10炮命中的炮數(shù),則ξ~B(10,),命中3炮的概率為 至少命中3炮的概率,為1減去命中不到3炮的概率,為 因np+p=10×+=,因此最可能命中[]=7炮. 2.,求生產(chǎn)10件產(chǎn)品中廢品數(shù)不超過2個的概率. 解
2025-04-19 04:41
【摘要】習(xí)題一1.寫出下列隨機(jī)試驗的樣本空間及下列事件中的樣本點(diǎn):(1)擲一顆骰子,記錄出現(xiàn)的點(diǎn)數(shù).‘出現(xiàn)奇數(shù)點(diǎn)’;(2)將一顆骰子擲兩次,記錄出現(xiàn)點(diǎn)數(shù).‘兩次點(diǎn)數(shù)之和為10’,‘第一次的點(diǎn)數(shù),比第二次的點(diǎn)數(shù)大2’;(3)一個口袋中有5只外形完全相同的球,編號分別為1,2,3,4,5;從中同時取出3只球,觀察其結(jié)果,‘球的最小號碼為1’;(
2025-07-12 16:04
【摘要】(概率課后習(xí)題答案詳解)董永?。ǜ怕收n后習(xí)題答案詳解)1第二章隨機(jī)變量X23456789101112P1/361/181/121/95/361/65/361/91/121/181/36解:根據(jù)1)
2025-01-24 21:14
【摘要】習(xí)題七(A)1、設(shè)總體服從參數(shù)為和的二項分布,為取自的一個樣本,試求參數(shù)的矩估計量與極大似然估計量.解:由題意,的分布律為:.總體的數(shù)學(xué)期望為.設(shè)是相應(yīng)于樣本的樣本值,則似然函數(shù)為取對數(shù),.令,解得的極大似然估計值為.從而得的極大似然估計量為.2,、設(shè)為取自總體的一個樣本,的概率密度為其中參數(shù),求
2025-07-09 21:03
【摘要】1、已知,若互不相容,則=1/32、設(shè)P(A|B)=1/4,P()=2/3,P(B|A)=1/6,則P(A)=1/23、已知,若互不相容,則=4、已知,則5、設(shè),若與獨(dú)立,則6、已知,,,則7、一批產(chǎn)品共10件,其中有2件次品,從這批產(chǎn)品中任取3件,則取出的3件中恰有一
2025-01-29 18:23
【摘要】概率論與數(shù)理統(tǒng)計習(xí)題解答第一章隨機(jī)事件及其概率7均勻分布·指數(shù)分布·隨機(jī)變量函數(shù)的概率分布一、公共汽車站每隔5分鐘有一輛汽車通過.乘客到達(dá)汽車站的任一時刻是等可能的.求乘客候車時間不超過3分鐘的概率.解:設(shè)隨機(jī)變量表示“乘客的候車時間”,則服從上的均勻分布,其密度函數(shù)為于是有二、已知
2025-01-29 17:12
【摘要】經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ)課后答案(概率統(tǒng)計第三分冊)完整的答案完整的答案隱藏窗體頂端窗體底端習(xí)題一1. 寫出下列事件的樣本空間:(1)把一枚硬幣拋擲一次;(2)把一枚硬幣連續(xù)拋擲兩次;(3)擲一枚硬幣,直到首次出現(xiàn)正面為止;(4)一個庫房在某一個時刻的庫存量(假定最大容量為M).解(1)={正面,反面} △ {正,反}(2)
2025-07-09 20:55
【摘要】1概率論與數(shù)理統(tǒng)計復(fù)旦大學(xué)習(xí)題一1.見教材習(xí)題參考答案.A,B,C為三個事件,試用A,B,C(1)A發(fā)生,B,C都不發(fā)生;(2)A與B發(fā)生,C(3)A,B,C都
2025-01-24 14:49
【摘要】概率論與數(shù)理統(tǒng)計習(xí)題及答案習(xí)題一1..,B,C為三個事件,試用A,B,C的運(yùn)算關(guān)系式表示下列事件:(1)A發(fā)生,B,C都不發(fā)生;(2)A與B發(fā)生,C不發(fā)生;(3)A,B,C都發(fā)生;(4)A,B,C至少有一個發(fā)生;(5)A,B,C都不發(fā)生;(6)A,B,C不都發(fā)生;(7)A,B,C至多有2個發(fā)生;(8)A,B,C至
2025-07-08 02:15
【摘要】201.將一枚均勻的硬幣拋兩次,事件分別表示“第一次出現(xiàn)正面”,“兩次出現(xiàn)同一面”,“至少有一次出現(xiàn)正面”。試寫出樣本空間及事件中的樣本點(diǎn)。解:(正,正),(正,反),(反,正),(反,反)(正,正),(正,反);(正,正),(反,反)(正,正),(正,反),(反,正)2.在擲兩顆骰子的試驗中,事件分別表示“點(diǎn)數(shù)之和為偶數(shù)”,“點(diǎn)數(shù)之和小于5”,“點(diǎn)數(shù)
2025-07-09 20:52
【摘要】291.現(xiàn)有10件產(chǎn)品,其中6件正品,4件次品。從中隨機(jī)抽取2次,每次抽取1件,定義兩個隨機(jī)變量、如下:試就下面兩種情況求的聯(lián)合概率分布和邊緣概率分布。(1)第
2025-07-09 21:10
【摘要】華東理工大學(xué)概率論與數(shù)理統(tǒng)計作業(yè)簿(第五冊)學(xué)院____________專業(yè)____________班級____________學(xué)號____________姓名____________任課教師____________第十三次作業(yè)一.填空題:1.已知二維隨機(jī)變量的聯(lián)合概率分布為0
2025-07-04 17:19
【摘要】一、離散型隨機(jī)變量的分布列二、常見離散型隨機(jī)變量的分布列三、小結(jié)第二節(jié)離散型隨機(jī)變量及其分布列引入分布的原因以認(rèn)識離散隨機(jī)變量為例,我們不僅要知道X取哪些值,而且還要知道它取這些值的概率各是多少,這就需要分布的概念.有沒有分布是區(qū)分一般變量與隨機(jī)變
2024-08-26 10:48
【摘要】概率論作業(yè)1.寫出下列隨機(jī)試驗的樣本空間:(1)記錄一個小班一次數(shù)學(xué)考試的平均分?jǐn)?shù)(以百分制記分);(2)在單位圓內(nèi)任取一點(diǎn),記錄它的坐標(biāo);(3)一射手射擊,直到擊中目標(biāo)為止,觀察射擊情況。(4)把A,B兩個球隨機(jī)地放到3個盒子中去,觀察球的分布情況(假設(shè)每個盒子可容納球的個數(shù)不限)。2.一工人生產(chǎn)了四件產(chǎn)品,以表示他生產(chǎn)的第i件產(chǎn)品是正品,試用表示下
2024-08-24 08:50