【摘要】1概率論與數(shù)理統(tǒng)計復(fù)旦大學(xué)習(xí)題一1.見教材習(xí)題參考答案.A,B,C為三個事件,試用A,B,C(1)A發(fā)生,B,C都不發(fā)生;(2)A與B發(fā)生,C(3)A,B,C都
2025-01-24 14:49
【摘要】概率論與數(shù)理統(tǒng)計習(xí)題及答案習(xí)題一1..,B,C為三個事件,試用A,B,C的運算關(guān)系式表示下列事件:(1)A發(fā)生,B,C都不發(fā)生;(2)A與B發(fā)生,C不發(fā)生;(3)A,B,C都發(fā)生;(4)A,B,C至少有一個發(fā)生;(5)A,B,C都不發(fā)生;(6)A,B,C不都發(fā)生;(7)A,B,C至多有2個發(fā)生;(8)A,B,C至
2025-07-08 02:15
【摘要】201.將一枚均勻的硬幣拋兩次,事件分別表示“第一次出現(xiàn)正面”,“兩次出現(xiàn)同一面”,“至少有一次出現(xiàn)正面”。試寫出樣本空間及事件中的樣本點。解:(正,正),(正,反),(反,正),(反,反)(正,正),(正,反);(正,正),(反,反)(正,正),(正,反),(反,正)2.在擲兩顆骰子的試驗中,事件分別表示“點數(shù)之和為偶數(shù)”,“點數(shù)之和小于5”,“點數(shù)
2025-07-09 20:52
【摘要】291.現(xiàn)有10件產(chǎn)品,其中6件正品,4件次品。從中隨機(jī)抽取2次,每次抽取1件,定義兩個隨機(jī)變量、如下:試就下面兩種情況求的聯(lián)合概率分布和邊緣概率分布。(1)第
2025-07-09 21:10
【摘要】習(xí)題1、(1)選中乘客是不超過30歲的乘車旅游的男性(2)選中的乘客是不超過30歲的女性或以旅游為乘車目的(3)選中乘客是不超過30歲的女性或乘車旅游的女性(4)選中乘客是30歲以上以旅游為目的男性2、(1)(2)(3)(4)3、(1)(2)(3)習(xí)題1、(該題題目有誤,請將改作)(1)(2)(3)
【摘要】1.觀察某地區(qū)未來3天的天氣情況,記表示“有天不下雨”,用事件運算的關(guān)系式表示:“三天均下雨”“三天中至少有一天不下雨”。正確答案:2.一根長為的棍子在任意兩點折斷,則得到的三段能圍成三角形的概率為。正確答案:,且滿足,,則。正確答案:答案講解:試題出處:4.已知隨機(jī)變量的概率分布為,則,。正確答案:1,
2025-06-22 20:01
【摘要】概率論與數(shù)理統(tǒng)計及其應(yīng)用習(xí)題解答第1章隨機(jī)變量及其概率1,寫出下列試驗的樣本空間:(1)連續(xù)投擲一顆骰子直至6個結(jié)果中有一個結(jié)果出現(xiàn)兩次,記錄投擲的次數(shù)。(2)連續(xù)投擲一顆骰子直至6個結(jié)果中有一個結(jié)果接連出現(xiàn)兩次,記錄投擲的次數(shù)。(3)連續(xù)投擲一枚硬幣直至正面出現(xiàn),觀察正反面出現(xiàn)的情況。(4)拋一枚硬幣,若出現(xiàn)H則再拋一次;若出現(xiàn)T,則再拋一顆骰子,觀
2025-07-09 15:15
【摘要】......第1章隨機(jī)變量及其概率1,寫出下列試驗的樣本空間:(1)連續(xù)投擲一顆骰子直至6個結(jié)果中有一個結(jié)果出現(xiàn)兩次,記錄投擲的次數(shù)。(2)連續(xù)投擲一顆骰子直至6個結(jié)果中有一個結(jié)果接連出現(xiàn)兩次,記錄投擲的
【摘要】某人投籃兩次,設(shè)A={恰有一次投中},B={至少有一次投中},C={兩次都投中},D={兩次都沒投中},又設(shè)隨機(jī)變量X為投中的次數(shù),試用X表示事件A,B,C,問A,B,C,D中哪些是互不相容事件?哪些是對立事件?{1}BX??{1}AX??解{2}CX??{0}DX??,AC??顯然,AD??,BD??,CD
2025-06-02 02:13
【摘要】......習(xí)題二,在其中取3次,每次任取1只,作不放回抽樣,以X表示取出的次品個數(shù),求:(1)X的分布律;(2)X的分布函數(shù)并作圖;(3).【解】故X的分布律為X012
【摘要】習(xí)題答案第1章三、解答題1.設(shè)P(AB)=0,則下列說法哪些是正確的?(1)A和B不相容;(2)A和B相容;(3)AB是不可能事件;(4)AB不一定是不可能事件;(5)P(A)=0或P(B)=0(6)P(A–B)=P(A)解:(4)(6)正確.
2025-07-09 20:46
【摘要】概率論與數(shù)理統(tǒng)計練習(xí)題系專業(yè)班姓名學(xué)號第一章隨機(jī)事件及其概率(一)一.選擇題1.對擲一粒骰子的試驗,在概率論中將“出現(xiàn)奇數(shù)點”稱為[C](A)不可能事件(B)必然事件(C)隨機(jī)事件
2025-07-12 17:08
【摘要】概率論與數(shù)理統(tǒng)計課后習(xí)題(1-4單元)第一單元1.解:(1)A1∪A2=“前兩次至少有一次擊中目標(biāo)”;(2)2A=“第二次未擊中目標(biāo)”;(3)A1A2A3=“前三次均擊中目標(biāo)”;(4)A1?A2?A3=“前三次射擊中至少有一次擊中目標(biāo)”;(5)A3-A2=“第三次擊中但第二次未擊中”;(6)A32A=
2025-01-24 01:12
【摘要】期中試卷第1題:隨機(jī)變量X的分布函數(shù)為,則下列各式成立的是(C)(A)P{X=2}=3/4(B)P{X=3}=1(C)P{X}=1/4(D)P{2X3}=3/4第2題:隨機(jī)變量X的分布函數(shù)為則下列各式成立的是[C](A)P(X=2)=3/5(B)P(X)=1/5
2025-07-09 15:24
【摘要】第一章事件與概率在數(shù)學(xué)系的學(xué)生中任選一名學(xué)生,令事件A表示被選學(xué)生是男生,事件B表示被選學(xué)生是三年級學(xué)生,事件C表示該生是運動員。(1)敘述的意義。(2)在什么條件下成立?(3)什么時候關(guān)系式是正確的?(4)什么時候成立?解(1)事件表示該是三年級男生,但不是運動員。(2)等價于,表示全系運動員都有是三年級的男生。(3)當(dāng)全系運動員都是三年級學(xué)生時。
2025-04-09 04:52