freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年山東省日照市中考數(shù)學(xué)試題及答案解析-閱讀頁

2024-08-24 00:39本頁面
  

【正文】 離的平方為OA2=|x﹣0|2+|y﹣0|2,當(dāng)⊙O的半徑為r時,⊙O的方程可寫為:x2+y2=r2.問題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫為?。▁﹣a)2+(y﹣b)2=r2 .綜合應(yīng)用:如圖3,⊙P與x軸相切于原點O,P點坐標(biāo)為(0,6),A是⊙P上一點,連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.①證明AB是⊙P的切點;②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標(biāo),并寫出以Q為圓心,以O(shè)Q為半徑的⊙O的方程;若不存在,說明理由.考點:圓的綜合題;全等三角形的判定與性質(zhì);等腰三角形的性質(zhì);直角三角形斜邊上的中線;勾股定理;切線的判定與性質(zhì);相似三角形的判定與性質(zhì);銳角三角函數(shù)的定義..專題:閱讀型.分析:問題拓展:設(shè)A(x,y)為⊙P上任意一點,則有AP=r,根據(jù)閱讀材料中的兩點之間距離公式即可求出⊙P的方程;綜合應(yīng)用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,從而可證到△POB≌△PAB,則有∠POB=∠PAB.由⊙P與x軸相切于原點O可得∠POB=90176。由此可得AB是⊙P的切線;②當(dāng)點Q在線段BP中點時,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得QO=QP=BQ=AQ.易證∠OBP=∠POA,則有tan∠OBP==.由P點坐標(biāo)可求出OP、OB.過點Q作QH⊥OB于H,易證△BHQ∽△BOP,根據(jù)相似三角形的性質(zhì)可求出QH、BH,進(jìn)而求出OH,就可得到點Q的坐標(biāo),然后運用問題拓展中的結(jié)論就可解決問題.解答:解:問題拓展:設(shè)A(x,y)為⊙P上任意一點,∵P(a,b),半徑為r,∴AP2=(x﹣a)2+(y﹣b)2=r2.故答案為(x﹣a)2+(y﹣b)2=r2;綜合應(yīng)用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P與x軸相切于原點O,∴∠POB=90176?!郃B是⊙P的切線;②存在到四點O,P,A,B距離都相等的點Q.當(dāng)點Q在線段BP中點時,∵∠POB=∠PAB=90176。OA⊥PB,∴∠OBP=90176。∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=8﹣4=4,∴點Q的坐標(biāo)為(4,3),∴OQ==5,∴以Q為圓心,以O(shè)Q為半徑的⊙O的方程為(x﹣4)2+(y﹣3)2=25.[來源:學(xué)。網(wǎng)]點評:本題是一道閱讀題,以考查閱讀理解能力為主,在解決問題的過程中,用到了全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、勾股定理、切線的判定與性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角函數(shù)的定義等知識,有一定的綜合性. 22.(14分)(2015?日照)如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點,交x軸與D,C兩點,連接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求拋物線的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)條件下:(1)P為y軸右側(cè)拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ACB相似?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.(2)設(shè)E為線段AC上一點(不含端點),連接DE,一動點M從點D出發(fā),沿線段DE以每秒一個單位速度運動到E點,再沿線段EA以每秒個單位的速度運動到A后停止,當(dāng)點E的坐標(biāo)是多少時,點M在整個運動中用時最少?考點:二次函數(shù)綜合題;線段的性質(zhì):兩點之間線段最短;矩形的判定與性質(zhì);軸對稱的性質(zhì);相似三角形的判定與性質(zhì);銳角三角函數(shù)的定義..專題:壓軸題.分析:(Ⅰ)只需把A、C兩點的坐標(biāo)代入y=x2+mx+n,就可得到拋物線的解析式,然后求出直線AB與拋物線的交點B的坐標(biāo),過點B作BH⊥x軸于H,如圖1.易得∠BCH=∠ACO=45176。然后根據(jù)三角函數(shù)的定義就可求出tan∠BAC的值;(Ⅱ)(1)過點P作PG⊥y軸于G,則∠PGA=90176。.若點G在點A的下方,①當(dāng)∠PAQ=∠CAB時,△PAQ∽△CAB.此時可證得△PGA∽△BCA,根據(jù)相似三角形的性質(zhì)可得AG=3PG=3x.則有P(x,3﹣3x),然后把P(x,3﹣3x)代入拋物線的解析式,就可求出點P的坐標(biāo)②當(dāng)∠PAQ=∠CBA時,△PAQ∽△CBA,同理,可求出點P的坐標(biāo);若點G在點A的上方,同理,可求出點P的坐標(biāo);(2)過點E作EN⊥y軸于N,如圖3.易得AE=EN,則點M在整個運動中所用的時間可表示為+=DE+EN.作點D關(guān)于AC的對稱點D′,連接D′E,則有D′E=DE,D′C=DC,∠D′CA=∠DCA=45176。DE+EN=D′E+EN.根據(jù)兩點之間線段最短可得:當(dāng)D′、E、N三點共線時,DE+EN=D′E+EN最?。藭r可證到四邊形OCD′N是矩形,從而有ND′=OC=3,ON=D′C=DC.然后求出點D的坐標(biāo),從而得到OD、ON、NE的值,即可得到點E的坐標(biāo).解答:解:(Ⅰ)把A(0,3),C(3,0)代入y=x2+mx+n,得,解得:.∴拋物線的解析式為y=x2﹣x+3.聯(lián)立,解得:或,∴點B的坐標(biāo)為(4,1).過點B作BH⊥x軸于H,如圖1.∵C(3,0),B(4,1),∴BH=1,OC=3,OH=4,CH=4﹣3=1,∴BH=CH=1.∵∠BHC=90176。BC=.同理:∠ACO=45176。﹣45176。=90176。.設(shè)點P的橫坐標(biāo)為x,由P在y軸右側(cè)可得x>0,則PG=x.∵PQ⊥PA,∠ACB=90176。.若點G在點A的下方,①如圖2①,當(dāng)∠PAQ=∠CAB時,則△PAQ∽△CAB.∵∠PGA=∠ACB=90176。=AE,即AE=EN,∴點M在整個運動中所用的時間為+=DE+EN.作點D關(guān)于AC的對稱點D′,連接D′E,則有D′E=DE,D′C=DC,∠D′CA=∠DCA=45176。DE+EN=D′E+EN.根據(jù)兩點之間線段最短可得:當(dāng)D′、E、N三點共線時,DE+EN=D′E+EN最?。藭r,∵∠D′CD=∠D′NO=∠NOC=90176
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1