【正文】
導(dǎo). 北京:機(jī)械工業(yè)出版社,19999[13]宛強(qiáng). 沖壓磨具設(shè)計(jì)及實(shí)例精解. 北京:化學(xué)工業(yè)出版社,20084[12]佘銀柱. 沖壓工藝與模具設(shè)計(jì). 北京:北京大學(xué)出版社,200511 [13]史鐵良. 冷沖模設(shè)計(jì)指導(dǎo). 北京:機(jī)械工業(yè)出版社,20095[14]張建中,何曉玲. 機(jī)械設(shè)計(jì)基礎(chǔ)課程設(shè)計(jì). 北京:高等教育出版社,20093[15]何忠保,陳曉華,王秀英. 典型零件模具圖冊(cè). 北京:機(jī)械工業(yè)出版社,20088[16]丁松聚. 冷沖模設(shè)計(jì). 北京:機(jī)械工業(yè)出版社,20084.附 錄主要零件的標(biāo)準(zhǔn)號(hào)及選用材料零件名稱 標(biāo)準(zhǔn)號(hào) 選用材料 熱處理HRC 上托、底座—81Q235 導(dǎo)柱A32h5X160 —81T10A滲碳58~62 導(dǎo)套A32H6X105X43T10A滲碳58~64 頂桿—814543~48 彈簧GB2089—8065Mn43~48 卸料螺釘—814535~40 螺栓A343~48 螺母A3Q235 螺釘GB70—804543~48 模柄A30X70 —81Q235 擋料銷—814543~48 導(dǎo)料銷—814543~48 銷釘GB119—85A343~48 圓柱銷GB119763528~38外文資料翻譯 Stamping Die Strip Optimization for Paired Parts Stamping Die Strip Optimization for Paired Parts, Mechanical Engineering DepartmentMcMaster UniversityHamilton, OntarioOctober 30, 2000AbstractIn stamping, operating cost are dominated by raw material costs, which can typically reach 75% of total costs in a stamping facility. In this paper, a new algorithm is described that determines stamping strip layouts for pairs of parts such that the layout optimizes material utilization efficiency. This algorithm predicts the jointlyoptimal blank orientation on the strip, relative positions of the paired blanks and the optimum width for the strip. Examples are given for pairing the same parts together with one rotated 180186。 for example, in a stamping operation running at 200 strokes per minute, a savings of just 10 grams of material per part will accumulate into a savings of more than a tonne of raw material per eighthour shift. The material utilization is set during the tooling design stage, and remains fixed for the (usually long) life of the tool. Thus, there is significant value in determining the optimal strip layout before tooling is built.This task is plicated, however, since changing each variable in the layout can change both the pitch (distance along the strip between adjacent parts) and strip width simultaneously. Evaluating layout efficiency manually is extremely challenging, and while exact optimal algorithms have been described for the layout of a single part on a strip, so far only approximate algorithms have been available for the layout of pairs of parts together. Nesting solutions for pairs of parts is an important problem since it is empirically known that nesting pairs of parts can often improve material utilization pared to nesting each part on a separate strip. This paper addresses the mon cases in which a given part is nested with a second copy of itself rotated at 180186。[7], the pitch and width of the layout determined and the material utilization calculated. After repeating these steps through a total rotation of 180186。) around A and following the trace of some reference point on B. For example, shows an example blank A. If a reference vertex is chosen at (0, 0), and a copy of the blank rotated 180186。 relative to the other, defines all feasible relative positions between the pair of blanks. A corollary of this property is that if the Minkowski sum of a single part is calculated. With its negative, ., . (A plete explanation of these properties of the Minkowski sum is given in [15].) These observations were the basis for the algorithm for optimally nesting a single part on a strip.The situation when nesting pairs of parts is more plex, since not only do the optimal orientations of the blanks and the strip width need to be determined, but the optimal relative position of the two blanks needs to be determined as well. To solve this problem, an iterative algorithm is suggested:Given: Blanks A and B (where B=–A when a blank is paired with itself at 180186。(4)Calculating the utilization at each of the 120 nodes on gives the results shown in . In this figure, the curve is broken as the translation vector passes the end of each edge of to show how utilization can change during the traversal of each edge. While some edge traversals show monotonic changes in utilization, others show two or even three local maxima. Discovering these local optima is the reason why a number of translation nodes are needed.Optimal Material Utilization for Various Translations Between Polygons A and –A.As a progression is made around , when local maxima are indicated, a numerical optimization technique is invoked. Since derivatives of the utilization function are not available(without additional putational effort),an intervalhalvingApproach was taken [19]. The initial interval consists of the nodes bordering the indicated local maximal point. Three equallyspaced points are placed across this interval (. at 1/4, 1/2 and 3/4 positions), and the utilization at each is calculated. By paring the utilization values at each point, a decision can be made as to which half of the interval is dropped from consideration and the process is repeated. This continues until the desired accuracy is obtained.本文將介紹一種新的計(jì)算方法用于實(shí)現(xiàn)雙工件在沖壓排樣設(shè)計(jì)中的最佳規(guī)劃方法,以便提高材料利用率。例如將兩個(gè)相同的工件中的其中一個(gè)旋轉(zhuǎn)180176。這種計(jì)算方法適合與沖模設(shè)計(jì)CAE系統(tǒng)結(jié)合使用。生產(chǎn)過程效率高,其中材料成本占據(jù)整個(gè)沖壓生產(chǎn)成本的75% [1]。沖壓生產(chǎn)的排樣設(shè)計(jì)直接決定廢料的大小。加工設(shè)計(jì)階段所創(chuàng)建的排樣設(shè)計(jì)直接決定了材料的損失程度。理想情況下,材料應(yīng)該被充分利用。例如,在每分鐘200次行程的沖壓生產(chǎn)中,每個(gè)行程僅節(jié)約10克材料也能夠在八小時(shí)的生產(chǎn)中累計(jì)到節(jié)約材料一噸以上。因此,加工生產(chǎn)前確定最佳排樣設(shè)計(jì)具有重大意義。評(píng)估設(shè)計(jì)效率非常具有挑戰(zhàn)性,單一零件在帶料上的布局能夠通過精確的最佳計(jì)算方法描述,迄今為止零件間的布局只能通過近似計(jì)算法則解決。本文引用普通案例中所取零件旋轉(zhuǎn)180176。本文通過兩個(gè)具體案例描述了一種新的排樣布局計(jì)算方法。例如, 通過紙板模擬沖裁來獲取一個(gè)好的排樣方法。也許首先要做出適合工件的矩形,然后將矩形順序排放在帶料上[2]。這種原理的方法具有一定局限性,盡管如此,在這種具有局限性下的設(shè)計(jì)中所產(chǎn)生較多的工藝廢料不能被避免,這些額外損失的材料導(dǎo)致了設(shè)計(jì)方案無法達(dá)到最佳化。具體實(shí)現(xiàn)方法為,將零件旋轉(zhuǎn)一定的角度,例如2176。在不斷重復(fù)這些步驟以后工件旋轉(zhuǎn)量達(dá)到180186。這種方法的缺點(diǎn)是,在一般情況下,最佳材料定位將降低旋轉(zhuǎn)增量同時(shí)不能被找到。梅塔啟發(fā)式優(yōu)化方法適用于排樣設(shè)計(jì),包括模擬退火[11, 12]和初步設(shè)計(jì) [13]。開發(fā)出一種在設(shè)計(jì)過程[15]中確定單一零件在帶料上的布局以及帶料的寬度的確定[14]的精確的最佳的計(jì)算方法。相似的理論在這個(gè)學(xué)科中基于一個(gè)名叫‘無適合多邊形’,‘障礙空間’和‘明可夫斯基和’創(chuàng)建。通過這種方法的應(yīng)用 (本文中,特殊的譯文是指明可夫斯基和), 能夠創(chuàng)建一種全球化的最佳的具有高效率的排樣布局的計(jì)算方法。在下文中,將簡(jiǎn)要介紹明可夫斯基和,以及它在帶料排樣設(shè)計(jì)中的應(yīng)用,和它在成對(duì)零件間嵌套問題的延伸的描述。隨著頂點(diǎn)數(shù)量的增加零件邊上的彎曲刃口能夠近似的得到任意想要達(dá)到的精確度。(1)表面上看, 令人聯(lián)想到這種方法中的零件A‘成長于’零件B,或是變化后的零件–B (也就是零件B旋轉(zhuǎn)180176。例如,圖1所