【正文】
圖 )[79]。使用39催化β二羰基化合物對(duì)硝基烯烴的不對(duì)稱(chēng)Michael加成得到6599%產(chǎn)率,1:150:1的dr值,7799%的ee值。圖 手性方酰胺催化β二羰基化合物對(duì)硝基烯烴的不對(duì)稱(chēng)Michael加成Lu等[81]報(bào)道了新穎的金雞納生物堿衍生的含磺酰胺結(jié)構(gòu)的雙功能有機(jī)催化劑40催化的雙環(huán)α取代的β酮酯對(duì)硝基烯烴的不對(duì)稱(chēng)Michael加成,產(chǎn)率9699%,對(duì)映選擇性高達(dá)9096%ee值,非對(duì)映選擇性最高達(dá)9:1的dr值(圖 )。Lu和Zhu[82]選取奎尼啶衍生的32為催化劑,以不同鏈長(zhǎng)的硝基乙烷至硝基癸烷、2芳基硝基乙烷和2環(huán)己基硝基乙烷和乙烯基砜類(lèi)化合物反應(yīng),產(chǎn)率7187%,對(duì)映選擇性7286%ee (圖 ),與脫磺酸基反應(yīng)聯(lián)用,成為一種新的α烷基手性胺的合成方法。 機(jī)理研究天然金雞納生物堿分子可以作為雙功能手性有機(jī)催化劑,即分別通過(guò)氫鍵供體和氫鍵受體的官能團(tuán)或原子來(lái)活化親電試劑和親核試劑。圖 天然金雞納生物堿對(duì)底物的活化模型(a)和QD與硫脲衍生物對(duì)底物的活化(b)Cucinotta和Gervasio[84]采用分子動(dòng)力學(xué)方法、從頭計(jì)算方法和量子化學(xué)/分子力學(xué)(QM/MM)計(jì)算方法研究了雙功能金雞納生物堿催化的酮酸酯和N苯基馬來(lái)酰亞胺的不對(duì)稱(chēng)Michael加成(圖 )及其反應(yīng)機(jī)理。使用QM/MM (nudged elastic band technique, NEB)計(jì)算方法計(jì)算四種過(guò)渡態(tài)結(jié)構(gòu)形成CC鍵的計(jì)算活化能表明,(a)的過(guò)渡態(tài)形式最有利,(a)給出了與實(shí)驗(yàn)觀察結(jié)果一致的主要立體異構(gòu)體。而未包含羥基活化的過(guò)渡態(tài)的能量高出近11 kcal/mol,這也支持催化劑起雙功能作用的觀點(diǎn)。[55]。催化劑上的硫脲或酰胺和叔胺的結(jié)構(gòu)和取向?qū)Σ粚?duì)稱(chēng)有機(jī)催化反應(yīng)的產(chǎn)率和立體選擇性起著關(guān)鍵性作用。多氫鍵供體對(duì)加速反應(yīng),改善非對(duì)映選擇性和對(duì)映選擇性起著非常重要的作用。目前,已經(jīng)發(fā)展了許多不同的金雞納類(lèi)生物堿[5961],它們?cè)诓粚?duì)稱(chēng)Michael加成方面取得了優(yōu)秀的催化效果。但是,較高的催化劑用量(1030 mol%)、較長(zhǎng)的反應(yīng)時(shí)間以及反應(yīng)類(lèi)型和底物的普適性等仍是我們必須面對(duì)的問(wèn)題。 課題的提出及研究?jī)?nèi)容研究發(fā)現(xiàn),較多的天然有機(jī)小分子催化劑如L脯氨酸及其衍生物、金雞納堿及其衍生物等,在許多不對(duì)稱(chēng)合成中顯示出了良好的對(duì)映選擇性催化效果。與手性過(guò)渡金屬催化劑及酶相比,大多手性有機(jī)小分子催化劑具有來(lái)源廣泛、容易得到、反應(yīng)條件溫和、穩(wěn)定性好、易于負(fù)載、環(huán)境友好,更加符合綠色化學(xué)的要求等獨(dú)特的優(yōu)點(diǎn)。雖然有機(jī)小分子催化劑在很多不對(duì)稱(chēng)有機(jī)反應(yīng)中表現(xiàn)出了巨大的潛力,但是到目前為止,由于所開(kāi)發(fā)的催化劑種類(lèi)較少,而且多數(shù)都在已有的催化劑骨架基礎(chǔ)上進(jìn)行不同結(jié)構(gòu)修飾得到,其適用的反應(yīng)類(lèi)型和底物均還十分有限。因此尋找和發(fā)現(xiàn)更多骨架類(lèi)型的和活性更高、立體選擇性更好和使用范圍更廣的不對(duì)稱(chēng)有機(jī)小分子催化劑具有重要意義。我們通過(guò)與金雞納生物堿的結(jié)構(gòu)對(duì)比,認(rèn)為其具可能具有一定的不對(duì)稱(chēng)催化的能力(圖 )。該工作是尋找新型骨架類(lèi)型的有機(jī)小分子催化劑的重要探索,也是天然產(chǎn)物化學(xué)研究?jī)?nèi)容的重要補(bǔ)充。s enantiomers and metabolite. Eur. J. Pharmacol. 2001, 415(23): 181189.[2] Lindberg P., Weidolf L. Method for the treatment of gastric acidrelated diseases and production of medication using () enantiomer of omeprazole. US005877192A. 1999.[3] 殷元騏, 蔣耀忠. 不對(duì)稱(chēng)催化反應(yīng)進(jìn)展. 北京: 科學(xué)出版社. 2000, 1213.[4] 林國(guó)強(qiáng), 陳耀全, 陳新滋, 李月明. 手性合成——不對(duì)稱(chēng)反應(yīng)及其應(yīng). 北京: 科學(xué)出版社, 第一版, 2000, 3.[5] 野依良治. 不對(duì)稱(chēng)催化:科學(xué)與機(jī)遇. 化學(xué)通報(bào),2002, 65(6): 363372.[6] Langenback, W. Fermentproblem und organische katalyse. Angew. Chem. 1932, 45, 9799.[7] Dalko, P. I.。 Nguyen, T. T.。 Ye,W.。 Xu, J.。 Alonso, D. A.。jera, C. Organocatalytic asymmetric conjugate additions. Tetrahedron: Asymmetry, 2007, 18(3): 299365.[20] List B. Introduction: Organocatalysis. Chem. Rev. 2007, 107(12): 54135415.[21] Pellissier H. Asymmetric organocatalysis. Tetrahedron 2007. 63(38): 9267–9331.[22] Hegedus L. S. Organocatalysis in Organic Synthesis. J. Am. Chem. Soc. 2009, 131(5): 17995–17997.[23] Tian S. K., Chen ., Hang, J. F., Tang, L., Mcdaid P., Deng, L. Asymmetric Organic Catalysis with Modified Cinchona Alkaloids. Acc. Chem. Res. 2004, 37(8): 621631.[24] Marcelli T., van Maarseveen J. H., Hiemstra H. Cupreines and Cupreidines: An Emerging Class of Bifunctional Cinchona Organocatalysts. Angew. Chem., Int. Ed. 2006, 45(45): 74967504. [25] Hoffman H. M. R., Frackenpohl J. Recent Advances in Cinchona Alkaloid Chemistry. Eur. J. Org. Chem. 2004, 2004(21): 42934312.[26] Johnson T A, Curtis M. D., Beak P. Highly Diastereoselective and Enantioselective CarbonCarbon Bond Formations in Conjugate Additions of Lithiated NBoc Allylamines to Nitroalkenes: Enantioselective Synthesis of 3,4 and 3,4,5Substituted Piperidines Including ()Paroxetine. J. Am. Chem. Soc. 2001, 123(5): 10041005.[27] Tsogoeva, S. B. Recent Advances in Asymmetric Organocatalytic 1,4Conjugate Additions. Eur. J. Org. Chem, 2007, 2007(11): 17011716.[28] Bredig G., Fiske P. S. Durch Katalysatoren bewirkte asymmetrische Synthese. Biochem. Z. 1912, 46, 7.[29] Pracejus, H.。tje, H. Organische Katalysatoren. LXXI Asymmetrische Synthesen mit Ketenen. IV. Zusammenh228。umlichen Bau einiger alkaloidartiger Katalysatoren und ihren stereospezifischen Wirkungen bei asymmetrischen Estersynthesen. J. Prakt. Chem. 1964, 24(4): 195205.[30] Wynberg H. Asymmetric catalysis by alkaloids. Topics in stereochemistry. 1986, 16, 87129.[31] L229。m B, Bergson G. Asymmetric induction in a Michaeltype reaction. Acta Chem Scand. 1973, 27(8): 3118–3119.[32] Wynberg H, Helder R. Asymmetric induction in the alkaloidcatalysed Michael reaction. Tetrahedron Lett. 1975, 16(46): 4057–4060.[33] Hermann K, Wynberg H. Asymmetric induction in the Michael reaction. J Org Chem. 1979, 44(13): 2238–2244.[34] Ahrendt K. A., Borths C. J., MacMillan . C. New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic DielsAlder Reaction. J. Am. Chem. Soc. 2000, 122 (17): 42434244.[35] Kacprzak K., Gawroński J.. Cinchona Alkaloids and Their Derivatives: Versatile Catalysts and Ligands in Asymmetric Synthesis. Synthesis 2001, 7: 961–998.[36] Song C. E. Cinchona Alkaloids in Synthesis and Catalysis, Ligands, Immobilization and Organocatalysis. WileyVCH: Weinheim, Germany, 2009, 105355.[37] Wu F., Hong R., Khan J., Liu X., Deng L. Asymmetric Synthesis of Chiral Aldehydes by Conjugate Additions with Bifunctional Organocatalysis by Cinchona Alkaloids. Angew. Chem. 2006, 118(26): 4407 –4411.[38] Bartoli G., Bosco M., Carlone, A., Cavalli A., Locatelli M., Mazzanti A., Ricci P., Sambri L., Melchiorre P. Organocatalytic Asymmetric Conjugate Addition of 1,3Dicarbonyl Compounds to Maleimides. Angew. Chem. Int. Ed., 2006, 45(30): 49664970.[39] Bella M., J248。 Tedeschi, L.。mpai A, So243。o M. W., Monge D., J248。ger H., MacMillan D. Asymmetric Organocatalysis from Biomimetic Concept to Application in Asymmetric Synthesis,WileyVCH,Weinheim, 2005, 1435.[86] Collona S., Hiemstra H., Wynberg H. Asymmetric induction in the basecatalysed Michael addition of nitromethane to chalcone. J. Chem. Soc., Chem. Commun. 1978, 6, 238239. [87] Corey E. J., Zhang F. Y. Enantioselective Michael Addition of Nitromethane to α,βEnones Catalyzed by Chiral Quaternary Ammonium Salts. A Simple Synthesis of (R)Baclofen. Org. Lett. 2000, 2(26): 42574259.31