【摘要】第一篇:不等式證明 不等式證明 : 比較法是證明不等式的最基本、最重要的方法之一,它可分為作差法、作商法 (1)作差比較: ①理論依據(jù)a-b0 ab;a-b=0 a=b;a-b a...
2024-10-29 11:38
【摘要】第一篇:不等式證明 不等式的證明 比較法證明不等式 a2-b2a-bb0,求證:+b2a+b 2.(本小題滿分10分)選修4—5:不等式選講 (1)已知x、y都是正實數(shù),求證:x3+y...
2024-11-14 12:00
【摘要】第一篇:不等式證明 不等式證明 不等式是數(shù)學的基本內(nèi)容之一,它是研究許多數(shù)學分支的重要工具,在數(shù)學中有重要的地位,也是高中數(shù)學的重要組成部分,在高考和競賽中都有舉足輕重的地位。不等式的證明變化大,...
2024-11-03 17:55
【摘要】不等式證明方法(五)判別式法、構造法、逆代法一、判別法通過對所證不等式的觀察、分析,構造出二次方程,證明中借助于二次方程的判別式,從而使不等式得證。.320,,:,2,,,,:12222azyxazyxazyxRzyx且不大于均不小于求證且已知例???????044)(44:2)(:2222222?????
2024-09-21 13:47
【摘要】第一篇:不等式證明方法(二)(大全) 不等式證明方法 (二)一、知識回顧 1、反證法:從否定結論出發(fā),經(jīng)過邏輯推理,導出矛盾,從而肯定原結論的正確; 2、放縮法:欲證A3B,可通過適當放大或縮...
2024-10-29 00:29
【摘要】第一篇:均值不等式的證明 均值不等式的證明 設a1,a2,a3...an是n個正實數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細過程,謝謝!...
2024-11-05 22:00
【摘要】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數(shù)學中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認真分...
2024-10-28 10:42
【摘要】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應用 基本不等式在求解最值、值域等方面有著重要的應用,利用基本不等式時,關鍵在對已知條件的靈活...
2024-10-29 03:11
【摘要】不等式的證明——綜合法導入新課1.證明().2.比較與的大小,并證明你的結論.嘗試探索,建立新知,求證例1已知證明:因為,則所以故①利用某些已經(jīng)證明過的不等式和不等式的性質推導出所要證明的不等式成立,這種證明方法通常叫做綜合法.②綜合法的思路是“由因
2024-08-14 00:13
【摘要】第一篇:不等式的證明(推薦) 不等式的基本性質 1、不等式:(1)a2+2f2a,(2)a2+b232(a-b-1),(3)a2+b2fab恒成立的個數(shù)是() (A)0(B)1(C)2(D)3[...
2024-11-08 22:00
【摘要】不等式的證明(習題課)1、比較法(1)比較法證明不等式的步驟作差---變形---判斷符號----得出結論(2)比較法經(jīng)常證明什么樣的不等式高次整式多項式、所證不等式兩邊有相同或局部相同的部分(3)作差之后變形的思維完全平方、因式積
2024-11-26 21:52
【摘要】課題:含有絕對值的不等式問題當時,則有:那么與及的大小關系怎樣?絕對值的定義:問題這需要討論:當綜上可知:當當定理1:如果a,b是實數(shù),則當且僅當時,等號成立.(1)從向量的角度看:不共線時,由于定理1與三角形之間的這種聯(lián)
2024-08-24 15:37
【摘要】不等式的性質二定理1:(對稱性)ab?bb,bcac.定理3:(可加性)ab?a+cb+c.定理4:若ab,c0,則acbc.若ab,c0,則acbc(可乘性)一.溫故
2024-11-26 15:49
【摘要】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當且僅當xy=...
2024-11-05 18:15
【摘要】第一篇:不等式證明[精選] §14不等式的證明 不等式在數(shù)學中占有重要地位,由于其證明的困難性和方法的多樣性,,而變形的依據(jù)是不等式的性質,不等式的性分類羅列如下:不等式的性質:a3b?a-b0...