【正文】
Arbitrage Pricing Theory ? 一、單因素模型 ( OneFactor Models) eFbar iiii ??? 19.%12%21%15321br iis t o cks t o cks t o cki第五節(jié) 套利定價(jià)理論( APT) ? 一、單因素模型 ( OneFactor Models) ? 1. “Almost Arbitrage” Opportunities ? A factor model implies that securities or portfolios with equal factor sensitivities will behave in the same way except for nonfactor risk. Therefore, securities or portfolios with the same factor sensitivities should offer the same expected returns. 第五節(jié) 套利定價(jià)理論( APT) ? 一、單因素模型 ( OneFactor Models) ? 1. “Almost Arbitrage” Opportunities ? If they do not, then “almost arbitrage” opportunities exist. Investors will take advantage of these opportunities, causing their elimination. That is the essential logic underlying APT. 第五節(jié) 套利定價(jià)理論( APT) ? 一、單因素模型 ( OneFactor Models) ? 2. Arbitrage Portfolios t h e nif XXXXXbXbXbXXX1..001321332211321??????????第五節(jié) 套利定價(jià)理論( APT) ? 一、單因素模型 ( OneFactor Models) ? 2. Arbitrage Portfolios 0%9 7 7 5.%120 7 5.%211.%1501 7 7 5..01.332211323232????????????????????rXrXrXXXXXXX第五節(jié) 套利定價(jià)理論( APT) ? 一、單因素模型 ( OneFactor Models) ? 3. Pricing Equation ? The value of λ 1 can be determined by considering a pure factor portfolio (or pure factor play) denoted p* that has unit sensitivity to the factor, meaning brbr ifii ??? 110 ????* ?b p第五節(jié) 套利定價(jià)理論( APT) ? 一、單因素模型 ( OneFactor Models) ? 3. Pricing Equation brrrrrrrriffiffpfpL e t t i n g)(11111*11*?????????????????第五節(jié) 套利定價(jià)理論( APT) ? 二、雙因素模型 ( TwoFactor Models) 7.9.%8%12%21%15432121 bbr iiis t o cks t o cks t o cks t o cki第五節(jié) 套利定價(jià)理論( APT) ? 二、雙因素模型 ( TwoFactor Models) 0%%808%121 0 8.%210 8 8.%151.08.,1 0 8.,0 8 8.,1..043214321432143212211???????????????????????????????XXXXXXXXXXXXXXXXeFbFbart h e nifiiiii第五節(jié) 套利定價(jià)理論( APT) ? 二、雙因素模型 ( TwoFactor Models) brbrrbbrrififfiifi22112211)()( ????????????第五節(jié) 套利定價(jià)理論( APT) ? 三、多因素模型 ( MultipleFactor Models) brbrbrrbbbreFbFbFbarikfkififfikkiiiikikiiii)()()(2211221102211???????????????????????????????????第五節(jié) 套利定價(jià)理論( APT) ? 四、 A Synthesis of the APT and the CAPM ? 1. OneFactor Models bbrerFbreFbarriMFe i MiMFMMiMiMMiiiMMiiMC O VC O VC O VC O V???????1121212),(),(),(),(?????????第五節(jié) 套利定價(jià)理論( APT) ? 四、 A Synthesis of the APT and the CAPM ? 1. OneFactor Models ?????MFfMifiMFfMfiMfMfirrbrbrrrrrrr1111)(])[()(??????????第五節(jié) 套利定價(jià)理論( APT) ? 四、 A Synthesis of the APT and the CAPM ? 2. TwoFactor Models bbbbrerFbrFbreFbFbarriMFiMFe i MiMFiMFMMiMiMiMMiiiiMMiiMC O VC O VC O VC O VC O V2211221122211222112),(),(),(),(),(??????????????????????第五節(jié) 套利定價(jià)理論( APT) ? 四、 A Synthesis of the APT and the CAPM ? 2. TwoFactor Models ?????????MFfMMFfMiifiMFiMFfMfiMfMfirrrrbbrbbrrrrrrr221122112211)()())(()(??????????????Problems 1. Assume that two securities, A and B, constitute the market portfolio. Their proportions and variances are , 3%, and , 5%, respectively. The covariance of the two securities is 2%. Calculate the betas of the two securities. Problems 1. Assume that two securities, A and B, constitute the market portfolio. Their proportions and variances are , 3%, and , 5%, respectively. The covariance of the two securities is 2%. Calculate the betas of the two securities.