【正文】
盾方程組運(yùn)用最小二乘法,要求滿足方程組的解,即求使下列值 最小的解 ,就是方程組的近似解:25矛盾方程組矛盾方程組得解:Matlab 實(shí)例實(shí)例xdata = [0 5 10 15 25]。degree = 1。xx = 5 : : 30。 plot(xdata, ydata, 39。, xx, yy)。?==niiii yxPw12])([② 連續(xù)型 /*continuous type */在 [a, b]上用廣義多項(xiàng)式 P(x) 擬合連續(xù)函數(shù) f(x) 時(shí),定義權(quán)函數(shù) ?(x) ?C[a, b],即誤差函數(shù) ? = 。the LSCOV function can perform weightedleastsquare regression各點(diǎn)的重要性可能是不一樣的重度 : 即權(quán)重或者密度,統(tǒng)稱為權(quán)系數(shù) 定義加權(quán)平方誤差為29使得30由多元函數(shù)取極值的必要條件得即31引入記號(hào)定義加權(quán)內(nèi)積32矩陣形式 (法方程組 )為方程組式化為33平方誤差為作為特殊情形 ,用多項(xiàng)式作擬合函數(shù)的法方程組為34Subject:What WeightedLeastSquares Fitting capabilities are available in MATLAB () and the Toolboxes?Problem Description:Currently, the presence of data outliers can create an undesirable fit. Because the outlier lies far away from the true pattern of data, it induces error to the true fit. A workaround to this problem would be to minimize the weight(s) of such outlier(s). Solution:In MATLAB, the LSCOV function can perform weightedleastsquare regression. x = lscov(A,b,w)where w is a vector length m of real positive weights, returns the weighted least squares solution to the linear system A*x = b, that is, x minimizes (b A*x)39。WFUN39。CONST39。WFUN39。WFUN39。andrews39。bisquare39。cauchy39。fair39。huber39。logistic39。talwar39。welsch