【摘要】拋物線標(biāo)準(zhǔn)方程及幾何性質(zhì)問題情境拋物線的生活實例拋球運動平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。一、定義的軌跡是拋物線。則點若MMNMF,1?即:︳︳︳︳··FMlN定點F叫做拋物線的焦
2024-09-03 22:22
【摘要】例5過拋物線焦點F的直線交拋物線于A,B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸。xyOFABD例1已知拋物線的方程為y2=4x,直線l過定點P(-2,1),斜率為k,k為何值時,直線l與拋物線y2=4x:只有一個公共點;有兩個公共
2024-11-29 03:31
【摘要】2020/12/16拋物線的幾何性質(zhì)范圍對稱性頂點離心率基本元素2020/12/16平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。定點F叫做拋物線的焦點。定直線l叫做拋物線的準(zhǔn)線。一、拋物線的定義即:︳︳︳︳·
2024-11-29 09:20
【摘要】一、復(fù)習(xí)⒈焦點弦的定義⒉焦半徑公式⒊通徑20px?pHH2||21?若M在焦點為F的拋物線上,)0(22??ppxy),(00yx則|MF|=OxyFM2px??Oxy
2024-11-29 01:54
【摘要】《拋物線的簡單幾何性質(zhì)》教學(xué)目標(biāo)?知識與技能目標(biāo)?使學(xué)生理解并掌握拋物線的幾何性質(zhì),并能從拋物線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)這些性質(zhì).?從拋物線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)拋物線的性質(zhì),從而培養(yǎng)學(xué)生分析、歸納、推理等能力?過程與方法目標(biāo)?復(fù)習(xí)與引入過程?1.拋物線的定義是什么??請一同學(xué)回答.應(yīng)為:“平面內(nèi)與一個定點F和一
2024-12-02 18:12
【摘要】復(fù)習(xí)課:拋物線主講:施海鵬作者:施海鵬高中數(shù)學(xué)課件網(wǎng)拋物線定義:平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。點F叫做拋物線的焦點,直線L叫做拋物線的準(zhǔn)線。拋物線拋物線的焦點拋物線的準(zhǔn)線即比值為1l┑Fp作者:施海鵬高中數(shù)學(xué)課件網(wǎng)
2024-11-29 06:22
2024-11-03 19:49
【摘要】容城中學(xué)曹靜寧圖形標(biāo)準(zhǔn)方程焦點坐標(biāo)準(zhǔn)線方程范圍對稱軸頂點離心率y2=2pxy2=-2pxx2=2pyx2=-2py)0,2(pF)0,2pF(-)2,0(pF)2,0(pF-2=px-2=px2=
2024-11-29 03:52
【摘要】掌握拋物線的幾何性質(zhì),特別是拋物線的特殊點、特殊線的特征及其內(nèi)在聯(lián)系.掌握拋物線的定義及其標(biāo)準(zhǔn)方程,鞏固掌握應(yīng)用拋物線的定義分析解決問題的一般方法.掌握拋物線的知識結(jié)構(gòu),明確其重點是直線與拋物線的位置關(guān)系.復(fù)習(xí)目標(biāo)拋物線拋物線的定義拋物線的標(biāo)準(zhǔn)方程
2024-12-07 19:45
【摘要】東莞市樟木頭中學(xué)李鴻艷xyOKHFMl目標(biāo)掌握拋物線的定義、標(biāo)準(zhǔn)方程、幾何圖形,能夠求出拋物線的方程,能夠解決簡單的實際問題..重點拋物線的方程的四種形式及應(yīng)用.難點拋物線標(biāo)準(zhǔn)方程的推導(dǎo)過程.1、拋物線的定義,代數(shù)表達(dá)式,標(biāo)準(zhǔn)方程。2.前面我們學(xué)習(xí)了橢圓、雙曲線的哪些幾何性質(zhì)?
2024-12-02 16:43
【摘要】第二章圓錐曲線與方程拋物線的簡單幾何性質(zhì)xyo準(zhǔn)線方程焦點坐標(biāo)標(biāo)準(zhǔn)方程圖形xyoFy2=2px(p0)x2=2py(p0)x2=-2py(p0)xyoFxyoFxyoFy
2024-08-24 07:31
【摘要】第2講橢圓、雙曲線、拋物線、標(biāo)準(zhǔn)方程與幾何性質(zhì)名稱橢圓雙曲線拋物線定義|PF1|+|PF2|=2a(2a|F1F2|)|PF|=點F不
2025-05-16 02:17
【摘要】中國領(lǐng)先的中小學(xué)教育品牌精銳教育學(xué)科教師輔導(dǎo)講義講義編號年級:高二輔導(dǎo)科目:數(shù)學(xué)課時數(shù):3
2025-07-10 07:09
【摘要】1(2,2)P(其最小距離為52)A(3,2)和拋物線y2=2x,F是拋物線焦點,試在拋物線上求一點P,使|PA|與|PF|的距離之和最小,并求出這個最小值.課外思維挑戰(zhàn)題:拋物線的簡單幾何性質(zhì)(一)2練習(xí):點A的坐標(biāo)為(3,1),若P是拋物線24yx?上的一動點,
2024-11-29 01:25
【摘要】拋物線定義及其標(biāo)準(zhǔn)方程高二數(shù)學(xué)第回顧:橢圓、雙曲線的第二定義?到一個定點的距離和它到一條定直線的距離的比是常數(shù)e的點的軌跡:·PFl0<e<1lF·Pe>1(2)當(dāng)e>1時,是雙曲線;(3)當(dāng)e=1時,它的軌跡是什么?(1)當(dāng)0
2024-11-30 03:21