【摘要】第六節(jié)二次函數(shù)基礎(chǔ)梳理1.二次函數(shù)解析式的三種形式(1)一般式:.(2)頂點(diǎn)式:.(3)交點(diǎn)式:.2.二次函數(shù)
2024-12-02 17:28
【摘要】二次函數(shù)考點(diǎn)分析★★★二次函數(shù)的圖像拋物線的時(shí)候應(yīng)抓住以下五點(diǎn):開(kāi)口方向,對(duì)稱(chēng)軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).★★二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)一般式:y=ax2+bx+c,三個(gè)點(diǎn)頂點(diǎn)坐標(biāo)(-,).頂點(diǎn)式:y=a(x-h(huán))2+k,頂點(diǎn)坐標(biāo)對(duì)稱(chēng)軸.,頂點(diǎn)坐標(biāo)(h,k)★★★abc作用分析│a│的大小決定了開(kāi)口的寬
2025-04-19 04:24
【摘要】二次函數(shù)中的存在性問(wèn)題1.如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過(guò)O,A兩點(diǎn),直線AC交拋物線于點(diǎn)D.(1)求拋物線的解析式;(2)求點(diǎn)D的坐標(biāo);(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,
2025-04-19 04:23
【摘要】草演他山之石可以攻玉學(xué)海無(wú)涯揚(yáng)帆起航《二次函數(shù)之面積問(wèn)題》預(yù)習(xí)指南一、填寫(xiě)下列有關(guān)一次函數(shù)之面積問(wèn)題的內(nèi)容1.坐標(biāo)系中處理面積問(wèn)題,要尋找并利用_____________的線,通常有以下三種思路:①__________________(規(guī)則圖形);②__________________(分割求和、補(bǔ)形作差);③__________________(例
【摘要】成都市中考?jí)狠S題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經(jīng)過(guò)C(2,0),D(0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過(guò)點(diǎn)E(0,﹣2)且平行于x軸,過(guò)A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時(shí),直線y=kx與x軸重合,求出此時(shí)的值;②試說(shuō)明無(wú)論k取何值,
2025-04-19 04:25
【摘要】1.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線的對(duì)稱(chēng)軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.(1)求拋物線的解析式;(2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積為17,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;2.已知在平面直
【摘要】第五節(jié)二次函數(shù)(2)二次函數(shù)有如下性質(zhì):①函數(shù)的圖象是__________,拋物線頂點(diǎn)的坐標(biāo)是________,拋物線的對(duì)稱(chēng)軸是________;②當(dāng)a0時(shí),拋物線開(kāi)口______,函數(shù)在x=處取____值________;在區(qū)間________上是減函數(shù),在________上是增函數(shù);③當(dāng)a0
2024-12-02 01:26
【摘要】二次函數(shù)的最值問(wèn)題練習(xí):已知函數(shù)y=x2+2x+2,xD,求此函數(shù)在下列各D中的最值:①[-3,-2];②[-2,1];③[0,1];④[-3,]顯示文本對(duì)象顯示點(diǎn)隱藏函數(shù)圖像顯示對(duì)象顯示文本對(duì)象顯示對(duì)象顯示點(diǎn)練習(xí):已知函數(shù)y=x2+2x+2,xD,求此
【摘要】二次函數(shù)教學(xué)設(shè)計(jì)課型:新授課課時(shí):一課時(shí)年級(jí):九年級(jí)一、教材分析《二次函數(shù)》是浙教版《數(shù)學(xué)》九年級(jí)上冊(cè)中的第一章第一節(jié),是《義務(wù)教育課程標(biāo)準(zhǔn)》“數(shù)與代數(shù)”領(lǐng)域的內(nèi)容。二次函數(shù)是九年級(jí)的第一節(jié)函數(shù)課,初中涉及到的“一元一次方程”,“二元一次方程組”,“一次函數(shù)”,“一元二次方程”,“反比例函數(shù)”這幾章代數(shù)的學(xué)習(xí)都為接下來(lái)的函數(shù)的進(jìn)一步學(xué)習(xí)奠定了基礎(chǔ)?!岸魏瘮?shù)”的學(xué)習(xí)
2025-04-22 02:41
【摘要】二次函數(shù)應(yīng)用題利潤(rùn)問(wèn)題例1、商場(chǎng)促銷(xiāo),將每件進(jìn)價(jià)為80元的服裝按原價(jià)100元出售,一天可售出140件,后經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),該服裝的單價(jià)每降低1元,其銷(xiāo)量可增加10件現(xiàn)設(shè)一天的銷(xiāo)售利潤(rùn)為y元,降價(jià)x元。(1)求按原價(jià)出售一天可得多少利潤(rùn)?(2)求銷(xiāo)售利潤(rùn)y與降價(jià)x的的關(guān)系式(3)商場(chǎng)要使每天利潤(rùn)為2850元并且使得玩家得到實(shí)惠,應(yīng)該降價(jià)多少元?(4)要使利潤(rùn)最大,則需降價(jià)多少
【摘要】石家莊e度論壇初中數(shù)學(xué)二次函數(shù)做題技巧一般地,自變量x和因變量y之間存在如下關(guān)系:?y=ax^2+bx+c(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)則稱(chēng)y為x的二次函數(shù)。二次函數(shù)表
2025-04-19 03:45
【摘要】二次方程根的分布與二次函數(shù)在閉區(qū)間上的最值歸納1、一元二次方程根的分布情況設(shè)方程的不等兩根為且,相應(yīng)的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點(diǎn),它們的分布情況見(jiàn)下面各表(每種情況對(duì)應(yīng)的均是充要條件)表一:(兩根與0的大小比較即根的正負(fù)情況)分布情況兩個(gè)負(fù)根即兩根都小于0兩個(gè)正根即兩根都大于0一正根一負(fù)根即一個(gè)根小于0,一個(gè)大于0大致圖象()
【摘要】二次函數(shù)單元卷一、選擇題,自變量x的值是()A.2B.-2C.1D.-1000xxxyyy1-1-10xy1()ABC
【摘要】二次函數(shù)單元檢測(cè)題滿(mǎn)分:120分時(shí)間:90分鐘 一.選擇題(每小題4分,共40分)1、拋物線y=x2-2x+1的對(duì)稱(chēng)軸是 ( ) (A)直線x=1 (B)直線x=-1 (C)直線x=2 (D)直線x=-22、(2008年武漢市)下列命題:①若,則;②若,則一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;③若,則一元二次
【摘要】二次函數(shù)與圖像1、如圖,在平面直角坐標(biāo)系中,開(kāi)口向上的拋物線與軸交于兩點(diǎn),為拋物線的頂點(diǎn),為坐標(biāo)原點(diǎn).若的長(zhǎng)分別是方程的兩根,且(1)求拋物線對(duì)應(yīng)的二次函數(shù)解析式;(2)過(guò)點(diǎn)作交拋物線于點(diǎn),求點(diǎn)的坐標(biāo);(3)在(2)的條件下,過(guò)點(diǎn)任作直線交線段于點(diǎn)求到直線的距離分別為,試求的最大值.