【摘要】二次函數(shù)綜合問題1:已知函數(shù)在區(qū)間內(nèi)單調(diào)遞減,則a的取值范圍是變式1:已知函數(shù)在區(qū)間(,1)上為增函數(shù),那么的取值范圍是_________.變式2:已知函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.2:已知函數(shù)在區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是變式1:若函數(shù)的最大值為M,最小值為m,則M+m的值等于__
2025-04-07 04:25
【摘要】二次函數(shù)專題:角度一、有關(guān)角相等1、已知拋物線的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),與軸交于點(diǎn),,過點(diǎn)作軸的平行線與拋物線交于點(diǎn),拋物線的頂點(diǎn)為,直線經(jīng)過、兩點(diǎn).(1)求此拋物線的解析式;(2)連接、、,試比較和的大小,并說明你的理由.對于第(2)問,比較角的大小a、如果是特殊角,也就是我們能分別計(jì)算出這兩個角的大小,那么他們之間的大小關(guān)系就清楚了b
2025-04-07 04:23
【摘要】二次函數(shù)動點(diǎn)問題題型Ⅰ因動點(diǎn)而產(chǎn)生的面積問題(2012?張家界)如圖,拋物線y=﹣x2+x+2與x軸交于C、A兩點(diǎn),與y軸交于點(diǎn)B,OB=2.點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為D,E為線段AB的中點(diǎn).(1)分別求出點(diǎn)A、點(diǎn)B的坐標(biāo);(2)求直線AB的解析式;(3)若反比例函數(shù)y=的圖象過點(diǎn)D,求k值;(4)兩動點(diǎn)P、Q同時從點(diǎn)A出發(fā),分別沿AB、AO方向向B、O移動,
2025-04-07 04:24
【摘要】二次函數(shù)零點(diǎn)問題【探究拓展】探究1:設(shè)分別是實(shí)系數(shù)一元二次方程和的一個根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設(shè)關(guān)于x的方程f(x)=0的兩實(shí)根為x1、x2,方程f(x)=x的兩實(shí)根為α、β.(1)若|α-β|=1,求a、b的關(guān)系式;(2)若a、b均為負(fù)整數(shù)
【摘要】課題:一次函數(shù)與二次函數(shù)的交點(diǎn)及交點(diǎn)的判斷目的:掌握一次函數(shù)與二次函數(shù)的交點(diǎn)坐標(biāo)的算法會用判別式判斷一次函數(shù)與二次函數(shù)有無交點(diǎn)初步認(rèn)識函數(shù)圖像中的集合問題重點(diǎn):一次函數(shù)與二次函數(shù)的交點(diǎn)坐標(biāo)的計(jì)算難點(diǎn):理解函數(shù)交點(diǎn)坐標(biāo)的意義課時:一課時過程:引入(1)看函數(shù)圖像通過函數(shù)特點(diǎn),性質(zhì)求解析式(2)通過解析式畫函數(shù)圖像通過觀察發(fā)現(xiàn)在同一坐標(biāo)系
【摘要】二次函數(shù)題目專練一、選擇題=x2+2x-2的頂點(diǎn)坐標(biāo)是()A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3),則下列結(jié)論正確的是(?。粒產(chǎn)b>0,c>0?。拢產(chǎn)b>0,c<0?。茫產(chǎn)b<0,c>0 ?。模產(chǎn)b<0,c<0 第2題圖第3題圖
【摘要】城關(guān)中學(xué)二分校九年級上冊數(shù)學(xué)電子教案二次函數(shù)設(shè)計(jì)人:宋旺平教學(xué)目標(biāo):了解什么是二次函數(shù)教學(xué)重點(diǎn):二次函數(shù)的有關(guān)概念教學(xué)難點(diǎn):二次函數(shù)的有關(guān)概念的應(yīng)用課時安排:1課時教學(xué)步驟:一、自學(xué)指導(dǎo):—P29頁的內(nèi)容(5分鐘)。①、②、③有什么特點(diǎn)?,弄清各項(xiàng)及其系數(shù)。.二、自學(xué)檢測:1.下列函數(shù)中,哪些是二次函數(shù)?(1)y=
2025-04-20 01:33
【摘要】一元二次方程根的分布情況設(shè)方程的不等兩根為且,相應(yīng)的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點(diǎn),它們的分布情況見下面各表(每種情況對應(yīng)的均是充要條件)表一:(兩根與0的大小比較即根的正負(fù)情況)分布情況兩個負(fù)根即兩根都小于0兩個正根即兩根都大于0一正根一負(fù)根即一個根小于0,一個大于0大致圖象()得出的結(jié)論大致圖象()
【摘要】二次函數(shù)1.最大利潤與二次函數(shù)?頂點(diǎn)式,對稱軸和頂點(diǎn)坐標(biāo)公式:?利潤=售價-進(jìn)價.駛向勝利的彼岸回味無窮二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)想一想P352?總利潤=每件利潤×銷售數(shù)量.何時橙子總產(chǎn)量最大?100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備
2024-11-15 04:55
【摘要】第六節(jié)二次函數(shù)基礎(chǔ)梳理1.二次函數(shù)解析式的三種形式(1)一般式:.(2)頂點(diǎn)式:.(3)交點(diǎn)式:.2.二次函數(shù)
2024-11-13 01:26
【摘要】(2012南京市,24,8)某玩具由一個圓形區(qū)域和一個扇形區(qū)域組成,如圖,在⊙O1和扇形O2CD中,⊙O1與O2C、O2D分別相切于點(diǎn)A、B,已知∠CO2D=600,E、F是直線O1O2與⊙O1、扇形O2CD的兩個交點(diǎn),且EF=24厘米,設(shè)⊙O1的半徑為x厘米.(1)用含x的代數(shù)式表示扇形O2CD的半徑;(2)若⊙O1、,當(dāng)⊙O1的半徑為多少時,該玩具的制作成本最小?
【摘要】咸陽育才中學(xué)電子教案課題。二次函數(shù)的圖像主備郝妮濤審核人上課人上課時間教學(xué)目標(biāo)知識與能力:(1)理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響。(2)掌握二次函數(shù)的性質(zhì)與圖象,掌握從函數(shù)的性質(zhì)推斷圖象的方研究法。過程與方法:掌握從函數(shù)解析式、性質(zhì)出發(fā)去認(rèn)識函數(shù)圖象的高度理解和研究函數(shù)的方法。情感態(tài)度和價值觀:讓學(xué)生感受數(shù)學(xué)思想
2024-11-16 17:28
【摘要】二次函數(shù)考點(diǎn)分析★★★二次函數(shù)的圖像拋物線的時候應(yīng)抓住以下五點(diǎn):開口方向,對稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).★★二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)一般式:y=ax2+bx+c,三個點(diǎn)頂點(diǎn)坐標(biāo)(-,).頂點(diǎn)式:y=a(x-h(huán))2+k,頂點(diǎn)坐標(biāo)對稱軸.,頂點(diǎn)坐標(biāo)(h,k)★★★abc作用分析│a│的大小決定了開口的寬
【摘要】二次函數(shù)中的存在性問題1.如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過O,A兩點(diǎn),直線AC交拋物線于點(diǎn)D.(1)求拋物線的解析式;(2)求點(diǎn)D的坐標(biāo);(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,