【摘要】為您服務(wù)教育網(wǎng)·易做易錯(cuò)題選不等式部分一、選擇題:1.(如中)設(shè)若0f(b)f(c),則下列結(jié)論中正確的是A(a-1)(c-1)0Bac1Cac=1Dac1錯(cuò)解原因是沒(méi)有數(shù)形結(jié)合意識(shí),正解是作出函數(shù)的圖象,由圖可得出選D.2.(如中)設(shè)成立的充分
2025-01-29 11:11
【摘要】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類(lèi)討論,那么如何討論呢?對(duì)含參一元二次不等式常用的分類(lèi)方法有三種:一、按項(xiàng)的系數(shù)的符號(hào)分類(lèi),即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對(duì)二次項(xiàng)系數(shù)進(jìn)行分類(lèi)討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為例2
2025-04-19 05:10
【摘要】解不等式高考要求不等式要求層次重難點(diǎn)一元二次不等式C解一元二次不等式例題精講板塊一:解一元二次不等式(一)知識(shí)內(nèi)容1.含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為的整式不等式,叫做一元二次不等式.一元二次不等式的解集,一元二次方程的根及二次函數(shù)圖象之間的關(guān)系如下表(以為例):判別式
2025-08-08 02:03
【摘要】高中數(shù)學(xué)不等式練習(xí)題 一.選擇題(共16小題)1.若a>b>0,且ab=1,則下列不等式成立的是( ?。〢.a(chǎn)+<<log2(a+b)) B.<log2(a+b)<a+C.a(chǎn)+<log2(a+b)< D.log2(a+b))<a+<2.設(shè)x、y、z為正數(shù),且2x=3y=5z,則( ?。〢.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x
2025-04-19 05:05
【摘要】第三章不等式第一教時(shí)教材:不等式、不等式的綜合性質(zhì)目的:首先讓學(xué)生掌握不等式的一個(gè)等價(jià)關(guān)系,了解并會(huì)證明不等式的基本性質(zhì)ⅠⅡ。過(guò)程:一、引入新課1.世界上所有的事物不等是絕對(duì)的,相等是相對(duì)的。2.過(guò)去我們已經(jīng)接觸過(guò)許多不等式從而提出課題二、幾個(gè)與不等式有關(guān)的名稱(chēng)(例略)1.“同向不等式與異向不等式”
2025-05-02 13:03
【摘要】第一篇:高中數(shù)學(xué)必修五不等關(guān)系與不等式教案 第三章不等式 必修5不等關(guān)系與不等式 一、教學(xué)目標(biāo) ,讓學(xué)生感受到現(xiàn)實(shí)生活中存在著大量的不等關(guān)系; (組)產(chǎn)生的實(shí)際背景的前提下,學(xué)習(xí)不等式的相關(guān)...
2024-10-28 17:51
【摘要】第一篇: 一、教學(xué)重點(diǎn) 1、理解比較法、綜合法、分析法的基本思路。 2、會(huì)運(yùn)用比較法、綜合法、分析法證明不等式。 比較法 (一)作差法 一開(kāi)始我們就有定義:對(duì)于任意兩個(gè)實(shí)數(shù)有,也就是說(shuō)...
2024-11-03 22:12
【摘要】高中數(shù)學(xué)模塊教學(xué)選修系列4《不等式選講》專(zhuān)題課例《柯西不等式》主講人:山東師范大學(xué)附屬中學(xué)史宏偉數(shù)學(xué)是智能的一種形式,利用這種形式,我們可以把現(xiàn)象世界中的種種對(duì)象,置之于數(shù)量概念的控制之下。
2024-08-24 01:57
【摘要】等差數(shù)列【知識(shí)梳理】1.等差數(shù)列的定義如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.2.等差中項(xiàng)如果三個(gè)數(shù)a,A,b成等差數(shù)列,那么A叫做a與b的等差中項(xiàng).這三個(gè)數(shù)滿(mǎn)足的關(guān)系式是A=.3.等差數(shù)列的通項(xiàng)公式已知等差數(shù)列{an}的首項(xiàng)為a1,公差為d遞推公式通項(xiàng)公式an
【摘要】12不等式的定義:用不等號(hào)連接兩個(gè)解析式所得的式子,叫做不等式.說(shuō)明:(1)不等號(hào)的種類(lèi):>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對(duì)數(shù)式和三角式等)(3)不等式研究的范圍是實(shí)數(shù)集R.3對(duì)于任意兩個(gè)實(shí)數(shù)a、b,在a>b,a=b,a
2024-12-08 12:09
【摘要】2010數(shù)學(xué)不等式放縮大全滑縣六中高三數(shù)學(xué)備課組20摘錄:法一:約分法三:數(shù)學(xué)歸納法略。09陜西22:已知數(shù)列滿(mǎn)足,.略(Ⅱ)證明:(1)略(2)當(dāng)n=1時(shí),,結(jié)論成立當(dāng)時(shí),易知分母縮小迭代2.09廣東21摘錄:(2)證明:評(píng)注:,另還可以用數(shù)學(xué)歸納法。令,則,令,得,給定區(qū)間,則有,則函數(shù)在上單調(diào)遞減,∴,即
2024-09-08 22:59
【摘要】不等式和絕對(duì)值不等式第一講.,數(shù)學(xué)研究的重要內(nèi)容不等式是式表示這樣的不等關(guān)系人們常用不等上存在的不等關(guān)系來(lái)描述客觀事物在數(shù)量輕與重矮、人們常用長(zhǎng)與短、高與現(xiàn)實(shí)中,,??????不等式一不等式的基本性質(zhì)1:,,.的大小位置關(guān)系來(lái)規(guī)定實(shí)數(shù)利用數(shù)軸上的點(diǎn)的左右因此可以對(duì)應(yīng)數(shù)軸上的點(diǎn)與實(shí)數(shù)一一道知我們實(shí)數(shù)的大小關(guān)系研究不等式的出
2024-12-08 12:12
【摘要】如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時(shí),當(dāng)時(shí),當(dāng)abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-12-08 08:48
【摘要】高中數(shù)學(xué)不等式專(zhuān)題教師版一、高考動(dòng)態(tài)考試內(nèi)容:不等式.不等式的基本性質(zhì).不等式的證明.不等式的解法.含絕對(duì)值的不等式.?dāng)?shù)學(xué)探索?:數(shù)學(xué)探索?(1)理解不等式的性質(zhì)及其證明.?dāng)?shù)學(xué)探索?(2)掌握兩個(gè)(不擴(kuò)展到三個(gè))正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會(huì)簡(jiǎn)單的應(yīng)用.?dāng)?shù)學(xué)探索?(3)掌握分析法、綜合法、比較法證明簡(jiǎn)單的不
【摘要】第一篇:高中數(shù)學(xué)不等式證明的常用方法經(jīng)典例題 關(guān)于不等式證明的常用方法 (1)比較法證不等式有作差(商)、變形、判斷三個(gè)步驟,變形的主要方向是因式分解、配方,判斷過(guò)程必須詳細(xì)敘述如果作差以后的式子...
2024-11-06 18:44