【摘要】第一篇:高中數(shù)學(xué)知識(shí)點(diǎn):不等式的證明及應(yīng)用 不等式的證明及應(yīng)用 知識(shí)要點(diǎn): 1.不等式證明的基本方法: ìa-b0?ab ?(1)比較法:ía-b=0?a=b ?a-b0?ab? ...
2024-11-06 18:11
【摘要】第一篇:2012高中數(shù)學(xué)單元訓(xùn)練不等式的證明(二) 課時(shí)訓(xùn)練37不等式的證明 (二)【說明】本試卷滿分100分,、選擇題(每小題6分,共42分) a2b 2+<x<1,a、b為正常數(shù),的最小值...
2024-11-05 06:07
【摘要】第2課時(shí)基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會(huì)用兩個(gè)定理解決函數(shù)的最值或值域問題.2.能運(yùn)用平均值不等式(兩個(gè)正數(shù)的)解決某些實(shí)際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點(diǎn))2.實(shí)際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2025-08-07 17:21
【摘要】為您服務(wù)教育網(wǎng)·易做易錯(cuò)題選不等式部分一、選擇題:1.(如中)設(shè)若0f(b)f(c),則下列結(jié)論中正確的是A(a-1)(c-1)0Bac1Cac=1Dac1錯(cuò)解原因是沒有數(shù)形結(jié)合意識(shí),正解是作出函數(shù)的圖象,由圖可得出選D.2.(如中)設(shè)成立的充分
2025-01-29 11:11
【摘要】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對(duì)含參一元二次不等式常用的分類方法有三種:一、按項(xiàng)的系數(shù)的符號(hào)分類,即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對(duì)二次項(xiàng)系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為例2
2025-04-19 05:10
【摘要】不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應(yīng)用不等式的性質(zhì)和運(yùn)算法則有許多,如對(duì)稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當(dāng)a1時(shí),原不等式等價(jià)于:1-a,即&
2025-04-19 05:05
【摘要】解不等式高考要求不等式要求層次重難點(diǎn)一元二次不等式C解一元二次不等式例題精講板塊一:解一元二次不等式(一)知識(shí)內(nèi)容1.含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為的整式不等式,叫做一元二次不等式.一元二次不等式的解集,一元二次方程的根及二次函數(shù)圖象之間的關(guān)系如下表(以為例):判別式
2025-08-08 02:03
【摘要】高中數(shù)學(xué)不等式練習(xí)題 一.選擇題(共16小題)1.若a>b>0,且ab=1,則下列不等式成立的是( )A.a(chǎn)+<<log2(a+b)) B.<log2(a+b)<a+C.a(chǎn)+<log2(a+b)< D.log2(a+b))<a+<2.設(shè)x、y、z為正數(shù),且2x=3y=5z,則( ?。〢.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x
【摘要】第一篇:高中數(shù)學(xué)復(fù)習(xí)專題講座關(guān)于不等式證明的常用方法 高考要求 不等式的證明,方法靈活多樣,它可以和很多內(nèi)容結(jié)合高考解答題中,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來是高中數(shù)學(xué)中的一個(gè)難點(diǎn),本...
2024-11-09 12:32
【摘要】第一篇:比較法證明不等式高中數(shù)學(xué)選修2-3 & 陳嬌 【教學(xué)目標(biāo)】 掌握兩個(gè)實(shí)數(shù)的大小與它們的差值的等價(jià)關(guān)系以及理解并掌握比較法的一般步驟。 掌握運(yùn)用比較法證明一些簡單的不等式的方法...
2024-11-06 07:13
【摘要】不等式的證明方法教學(xué)目標(biāo)知識(shí)與技能:比較法,綜合法,分析法:反證法,換元法,放縮法[過程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)初步學(xué)會(huì)不等式證明的三種常用方法:比較法,綜合法,分析法教學(xué)
2024-12-10 00:30
【摘要】如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時(shí),當(dāng)時(shí),當(dāng)abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-12-08 08:48
【摘要】專題基本不等式編者:高成龍專題基本不等式【一】基礎(chǔ)知識(shí)基本不等式:(1)基本不等式成立的條件:;(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)時(shí)取等號(hào).(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2024-08-24 19:27
【摘要】基本不等式的證明課時(shí)目標(biāo);.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時(shí)取“=”號(hào)).2.若a,b都為____數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時(shí),等號(hào)成立),稱上述不等式為______不等式,其中________稱為a,b的算術(shù)平均數(shù),
2024-12-25 10:13
【摘要】3.基本不等式的證明學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入如下圖所示,以線段a+b的長為直徑作圓,在直徑AB上取點(diǎn)C,使AC=a,CB=b,過點(diǎn)C作垂直于直徑AB的弦DD′,連接AD、DB,則DC能否用a,b表示,DD′與A
2024-12-07 19:03