freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)25不等式的證明教案-閱讀頁

2024-11-03 22:12本頁面
  

【正文】 次方程ax2a185。2aD4ac179。x1+x2=239。a237。xx=12239。(2)函數(shù)與不等式:利用函數(shù)圖象找出等價(jià)關(guān)系,轉(zhuǎn)化為不等式問題去解決。f(n),且當(dāng)x>0時(shí),0<f(x)<1(1)f(0)=1,且當(dāng)x<0時(shí),f(x)>1;(2)f(x)在R上單調(diào)遞減;(3)設(shè)集合A={(x,y)|f(x2)求a的取值范圍2x2+bx+c已知函數(shù)f(x)=(b<0)的值域是[1,3],2x+1(1)求b、c的值;(2)判斷函數(shù)F(x)=lgf(x),當(dāng)x∈[-1,1]時(shí)的單調(diào)性,并證明你的結(jié)論;(3)若t∈R,求證 lg711≤F(|t-|-|t+|)≤566數(shù)列與不等式的交匯題型分析及解題策略【命題趨向】數(shù)列與不等式交匯主要以壓軸題的形式出現(xiàn),試題還可能涉及到與導(dǎo)數(shù)、前n項(xiàng)和公式以及二者之間的關(guān)系、等差數(shù)列和等比數(shù)列、歸納與猜想、數(shù)歸納法、比較大小、不等式證明、參數(shù)取值范圍的探求,在不等式的證明中要注意放縮法的應(yīng)用.【典例分析】題型一 求有數(shù)列參與的不等式恒成立條件下參數(shù)問題求得數(shù)列與不等式結(jié)合恒成立條件下的參數(shù)問題主要兩種策略:(1)若函數(shù)f(x)在定義域?yàn)镈,則當(dāng)x∈D時(shí),有f(x)≥M恒成立219。f(x)max≤M;(2)利用等差數(shù)列與等比數(shù)列等數(shù)列知識(shí)化簡不等式,1【例1】等比數(shù)列{an}的公比q>1,第17項(xiàng)的平方等于第24項(xiàng),求使a1+a2+…+an>…恒成立的正整數(shù)n的取a1a2an值范圍.【例2】(08安徽高考)設(shè)數(shù)列{an}滿足a1=0,an+1=can3+1-c,c∈N*,其中c為實(shí)數(shù).(Ⅰ)證明:an∈[0,1]對(duì)任意n∈N*11成立的充分必要條件是c∈[0,1];(Ⅱ)設(shè)0<c<,證明:an≥1-(3c)n1,n∈N*;(Ⅲ)設(shè)0<c<,證明:a12+a22+…+an2332>n+1-n∈N*.1-3c題型三 求數(shù)列中的最大值問題求解數(shù)列中的某些最值問題,有時(shí)須結(jié)合不等式來解決,其具體解法有:(1)建立目標(biāo)函數(shù),通過不等式確定變量范圍,進(jìn)而求得最值;(2)首先利用不等式判斷數(shù)列的單調(diào)性,然后確定最值;(3)利用條件中的不等式關(guān)系確定最值.【例5】(08湖北)已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=n+n-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整3數(shù).(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn},使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,例1 把數(shù)列一次按第一個(gè)括號(hào)一個(gè)數(shù),按第二個(gè)括號(hào)兩個(gè)數(shù),按第三個(gè)括號(hào)三個(gè)數(shù),按第四個(gè)括號(hào)一個(gè)數(shù)?,循環(huán)分為(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23)?,:恰當(dāng)?shù)姆纸M, Sk+1-2>-2{an}是由正數(shù)構(gòu)成的等比數(shù)列, bn=an+1+an+2,=an+an+3,則()S179。點(diǎn)評(píng):此題較易入手,利用作差法即可比較大小, 若對(duì)x206。,1],不等式(mm)2x()x1恒成立,則實(shí)數(shù)m的取值范圍()ABDA.(2,3)B.(3,3)C.(2,2)D.(3,4)例4四棱錐SABCD的所有棱長均為1米,一只小蟲從S點(diǎn)出發(fā)沿四棱錐的棱爬行,(1)求PP3的值。2,n206。2,n206。(an),若229。N恒成立,試求a1的取值范圍。N),記=Tk7.229。231。1246。2)。n12n1248。7(n179。1) 4aaD.a(chǎn)6a8()D.bn≤()1.已知無窮數(shù)列{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,則有aaA.<a6a8aaB.a(chǎn)6a8aaC.>a6a82.設(shè){an}是由正數(shù)構(gòu)成的等比數(shù)列,bn=an+1+an+2,=an+an+3,則A.bn>B.bn<C.bn≥3.已知{an}為等差數(shù)列,{bn}為正項(xiàng)等比數(shù)列,公比q≠1,若a1=b1,a11=b11,則()A.a(chǎn)6=b6 A.9 A.S4a5<S5a4B.a(chǎn)6>b6 B.8 B.S4a5>S5a4C.a(chǎn)6<b6 C.7 C.S4a5=S5a4 S(n+32)Sn+11C.D.a(chǎn)6>b6或a6<b6()D.6 D.不確定()1504.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-9n,第k項(xiàng)滿足5<ak<8,則k=5.已知等比數(shù)列{an}的公比q>0,其前n項(xiàng)的和為Sn,則S4a5與S5a4的大小關(guān)系是()6.設(shè)Sn=1+2+3+…+n,n∈N*,則函數(shù)f(n)=A.120B.130D.7.已知y是x的函數(shù),且lg3,lg(sinx-),lg(1-y)順次成等差數(shù)列,則A.y有最大值1,無最小值B.y有最小值()1111C.y有最小值,最大值1D.y有最小值-1,最大值11212()D.(-∞,-1]∪[3,+∞)8.已知等比數(shù)列{an}中a2=1,則其前3項(xiàng)的和S3的取值范圍是A.(-∞,-1]B.(-∞,-1)∪(1,+∞)C.[3,+∞)9.設(shè)3b是1-a和1+a的等比中項(xiàng),則a+3b的最大值為()A.1()A.充分不必要條件 11.{an}為等差數(shù)列,若A.11B.必要不充分條件C.充分比要條件D.既不充分又不必要條件()B.2C.3D.410.設(shè)等比數(shù)列{an}的首相為a1,公比為q,則“a1<0,且0<q<1”是“對(duì)于任意n∈N*都有an+1>an”的a1,且它的前n項(xiàng)和Sn有最小值,那么當(dāng)Sn取得最小正值時(shí),n= a10B.17C.19D.2112.設(shè)f(x)是定義在R上恒不為零的函數(shù),對(duì)任意實(shí)數(shù)x、y∈R,都有f(x)f(y)=f(x+y),若a1=an=f(n)(n∈N*),則數(shù)列{an}的前n項(xiàng)和Sn的取值范圍是1A.[,2)B.[,2]()1C.1)D.[1]S13.等差數(shù)列{an}的前n項(xiàng)和為Sn,且a4-a2=8,a3+a5=26,記Tn=,如果存在正整數(shù)M,使得對(duì)一切正整數(shù)n,Tn≤M都n成立.則M的最小值是__________.14.無窮等比數(shù)列{an}中,a1>1,|q|<1,且除a1外其余各項(xiàng)之和不大于a1的一半,則q的取值范圍是________.(a+b)215.已知x>0,y>0,x,a,b,y成等差數(shù)列,x,c,d,y成等比數(shù)列,A.0B.1C.2D.416.等差數(shù)列{an}的公差d不為零,Sn是其前n項(xiàng)和,給出下列四個(gè)命題:①A.若d<0,且S3=S8,則{Sn}中,S5和S6都是{Sn}中的最大項(xiàng);②給定n,對(duì)于一定k∈N*(k<n),都有ank+an+k=2an;③若d>0,則{Sn}中一定有最小的項(xiàng);④存在k∈N*,使ak-ak+1和ak-ak1同號(hào) .已知{an}是一個(gè)等差數(shù)列,且a2=1,a5=-5.(Ⅰ)求{an}的通項(xiàng)an;(Ⅱ)求{an}前n項(xiàng)和Sn的最大值.18.已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(an,an+1)(n∈N*)在函數(shù)y=x2+1的圖象上.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)若列數(shù){b}滿足b=1,b=b+2an,求證:b (x)=6x-2,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖像上.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;1m(Ⅱ)設(shè)bn=,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<對(duì)所有n∈N*都成立的最小正整數(shù)m20anan+122.?dāng)?shù)列,l是常數(shù).(Ⅰ)當(dāng)a2=1時(shí),求l及a3的值;(Ⅱ)2,L){an}滿足a1=1,an+1=(n2+nl)an(n=1,數(shù)列{an}是否可能為等差數(shù)列?若可能,求出它的通項(xiàng)公式;若不可能,說明理由;(Ⅲ)求l的取值范圍,使得存在正整數(shù)m,當(dāng)nm時(shí)總有an一、利用導(dǎo)數(shù)證明不等式(一)、利用導(dǎo)數(shù)得出函數(shù)單調(diào)性來證明不等式0.利用導(dǎo)數(shù)處理與不等式有關(guān)的問題某個(gè)區(qū)間上導(dǎo)數(shù)大于(或小于)0時(shí),則該單調(diào)遞增(或遞減)。直接構(gòu)造函數(shù),然后用導(dǎo)數(shù)證明該函數(shù)的增減性;再利用函數(shù)在它的同一單調(diào)遞增(減)區(qū)間,自變量越大,函數(shù)值越大(?。瑏碜C明不等式成立。例2:已知:a,b∈R,bae, 求證:abb a,(e為自然對(duì)數(shù)的底)(二)、利用導(dǎo)數(shù)求出函數(shù)的最值(或值域)后,再證明不等式。從而把證明不等式問題轉(zhuǎn)化為函數(shù)求最值問題。例5:f(x)=3x-x, x1,x2∈[-1,1]時(shí),求證:|f(x1)-f(x2)|≤二、利用導(dǎo)數(shù)解決不等式恒成立問題不等式恒成立問題,一般都會(huì)涉及到求參數(shù)范圍,往往把變量分離后可以轉(zhuǎn)化為mf(x)(或ma=(+9(a206。=n(xa);n(Ⅱ)設(shè)fn(x)=xn-(xa),對(duì)任意n≥a,證明f ’n+1(n+1)>(n+1)f ’
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1