【摘要】......抽象函數(shù)的周期性與對稱性知識點梳理一、抽象函數(shù)的對稱性定理1.若函數(shù)定義域為,且滿足條件:,則函數(shù)的圖象關于直線對稱。推論1.若函數(shù)定義域為,且滿足條件:,則函數(shù)的圖像關于直線對稱。推論
2025-05-31 05:00
【摘要】函數(shù)奇偶性、對稱性與周期性奇偶性、對稱性和周期性是函數(shù)的重要性質,下面總結關于它們的一些重要結論及運用它們解決抽象型函數(shù)的有關習題。一、幾個重要的結論(一)函數(shù)圖象本身的對稱性(自身對稱)2、的圖象關于直線對稱。3、的圖象關于直線對稱。4、的圖象關于直線對稱。5、的圖象關于點對稱。6、
2025-07-03 20:22
【摘要】函數(shù)的單調性、奇偶性基礎卷選擇題1.若函數(shù)是奇函數(shù),則m的取值是(?。 ? 2.已知函數(shù)y=f(x)在(-3,0)上是減函數(shù),又y=f(x-3)是偶函數(shù),則下列結論正確的是(?。〢.
2024-08-23 16:22
【摘要】......函數(shù)對稱性、周期性和奇偶性關嶺民中數(shù)學組(一)、同一函數(shù)的函數(shù)的奇偶性與對稱性:(奇偶性是一種特殊的對稱性)1、奇偶性:(1)奇函數(shù)關于(0,0)對稱,奇函數(shù)有關系式(2)偶函數(shù)關于y(即x=0)軸對稱,偶函
2025-07-01 04:13
【摘要】函數(shù)單調性、奇偶性、對稱性、周期性解析一、函數(shù)的單調性1.單調函數(shù)與嚴格單調函數(shù)設為定義在上的函數(shù),若對任何,當時,總有(ⅰ),則稱為上的增函數(shù),特別當且僅當嚴格不等式成立時稱為上的嚴格單調遞增函數(shù)。(ⅱ),則稱為上的減函數(shù),特別當且僅當嚴格不等式成立時稱為上的嚴格單調遞減函數(shù)。2.函數(shù)單調的充要條件★若為區(qū)間上的單調遞增函數(shù),、為區(qū)間內兩任意值,那么有:或
2025-07-01 08:23
【摘要】......函數(shù)對稱性、周期性和奇偶性規(guī)律一、同一函數(shù)的周期性、對稱性問題(即函數(shù)自身)1、周期性:對于函數(shù),如果存在一個不為零的常數(shù)T,使得當x取定義域內的每一個值時,都有都成立,那么就把函數(shù)叫做周期函數(shù),不為零的常數(shù)T叫做這
2025-07-01 03:50
【摘要】第七講函數(shù)的奇偶性與周期性回歸課本(1)函數(shù)的奇偶性的定義奇偶性定義圖象特點偶函數(shù)如果函數(shù)f(x)的定義域內任意一個x都有f(-x)=f(x),那么函數(shù)f(x)是偶函數(shù).關于y軸對稱奇函數(shù)如果函數(shù)f(x)的定義域內任意一個x都有f(-x)=-f(x),那么函數(shù)f(x)是奇函
2025-01-23 13:40
【摘要】......函數(shù)單調性、奇偶性、周期性和對稱性的綜合應用例1、設f(x)是定義在R上的奇函數(shù),且的圖象關于直線對稱,則f(1)+f(2)+f(3)+f(4)+f(5)=_0_______________.【考點分析
2025-07-01 08:18
【摘要】年級學科導學案編寫人:初審人:備課組長::使用時間課題:第2課時函數(shù)的單調性、奇偶性和周期性班級:姓名:【學習目標】1、理解函數(shù)的單調性、奇偶性和周期性的定義2、會判斷并證明函數(shù)的單調性、奇偶性
2024-08-23 09:14
【摘要】......抽象函數(shù)的對稱性、奇偶性與周期性常用結論:抽象函數(shù)是指沒有給出具體的函數(shù)解析式或圖像,只給出一些函數(shù)符號及其滿足的條件的函數(shù),如函數(shù)的定義域,解析遞推式,特定點的函數(shù)值
2025-07-09 16:27
【摘要】......抽象函數(shù)的對稱性、奇偶性與周期性總結及習題:抽象函數(shù)是指沒有給出具體的函數(shù)解析式或圖像,只給出一些函數(shù)符號及其滿足的條件的函數(shù),如函數(shù)的定義域,解析遞推式,
2025-04-10 00:35
【摘要】函數(shù)復習內容:函數(shù)的定義域、值域、單調性、奇偶性、對稱性、周期性、函數(shù)的綜合應用一.常見函數(shù)(基本初等函數(shù)):1.2.3.4.5.冪函數(shù):(包括前四個函數(shù))6.指數(shù)函數(shù):7.對數(shù)函數(shù):8.三角函數(shù):,,由以上函數(shù)進行四則運算、復合運算得到的函數(shù)都是初等函數(shù)。如:,,,試著分析以上函數(shù)的構成。二.
2024-08-23 14:22
【摘要】......2.定義在上的函數(shù)滿足.當時,,當時,,則()(A)(B)(C)(D)【答案】A【解析】試題分析:根據(jù)可知:是周期為的周期函數(shù),且,,所以答案為A.考點:1.函數(shù)的周期
2025-04-08 12:18
【摘要】第六講函數(shù)的單調性?奇偶性?周期性走進高考第一關基礎關教材回歸(1)函數(shù)的單調性的概念①一般地,設函數(shù)f(x)的定義域為I,如果對于定義域I內某個區(qū)間D上的任意兩個自變量的值x1,x2,當x1x2時,a.若________________,則f(x)在區(qū)間D上是增函數(shù).b
2024-08-20 17:17
【摘要】一、單調性二、奇偶性三、周期性四、有界性第三節(jié)函數(shù)的幾種特性一、單調性定義設函數(shù)y=f(x)在數(shù)集X(X可以是f(x)的定義域也可以是定義域的一部分).如果對于任意的,當時,均有則稱函數(shù)y=f(x)在區(qū)間X上單調增加(或單調減少)
2024-11-01 14:11