freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

備戰(zhàn)中考數學-平行四邊形綜合試題附答案-閱讀頁

2025-03-31 22:12本頁面
  

【正文】 的代數式表示).(2)求點G落在線段AC上時t的值.(3)當S>0時,求S與t之間的函數關系式.(4)點P在點E出發(fā)的同時從點A出發(fā)沿AHA以每秒2個單位長度的速度作往復運動,當點E停止運動時,點P隨之停止運動,直接寫出點P在△EFG內部時t的取值范圍.【答案】(1)62t;(2)t=2;(3)當<t≤2時,S=t2+t3;當2<t≤3時,S=t2+t;(4)<t<.【解析】試題分析:(1)由菱形的性質得出BC=AB=6得出CE=BCBE=62t即可;(2)由菱形的性質和已知條件得出△ABC是等邊三角形,得出∠ACB=60176。GE=EF=BE?sin60176。由三角函數求出CE==t,由BE+CE=BC得出方程,解方程即可;(3)分兩種情況:①當<t≤2時,S=△EFG的面積△NFN的面積,即可得出結果;②當2<t≤3時,由①的結果容易得出結論;(4)由題意得出t=時,點P與H重合,E與H重合,得出點P在△EFG內部時,t的不等式,解不等式即可.試題解析:(1)根據題意得:BE=2t,∵四邊形ABCD是菱形,∴BC=AB=6,∴CE=BCBE=62t;(2)點G落在線段AC上時,如圖1所示:∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60176。∵△EFG是等邊三角形,∴∠GEF=60176。=t,∵EF⊥AB,∴∠BEF=90176。=30176。∴∠GEC=90176。=6=3,3247。2=,∴t=時,點P與H重合,E與H重合,∴點P在△EFG內部時,<(t)2<t(2t3)+(2t3),解得:<t<;即點P在△EFG內部時t的取值范圍為:<t<.考點:四邊形綜合題.14.已知一次函數y=x+3的圖象與x軸、y軸分別交于A、B兩點,以線段AB為直角邊在第二象限內左等腰直角三角形ABC,∠BAC=90176。時,得到△BDE,如圖2所示,求過B、D兩點直線的函數關系式.③在②的條件下,旋轉過程中AC掃過的圖形的面積是多少?(3)將△ABC向右平移到△A′B′C′的位置,點C′為直線AB上的一點,請直接寫出△ABC掃過的圖形的面積.【答案】(1):5;5;(2)①(0,﹣2);②直線BD的解析式為y=﹣x+3;③S=π;(3)△ABC掃過的面積為.【解析】試題分析:(1)根據坐標軸上的點的坐標特征,結合一次函數的解析式求出A、B兩點的坐標,利用勾股定理即可解答;(2)①因為B(0,3),所以OB=3,所以AB=5,所以AO=ABBO=53=2,所以A(0,2);②過點C作CF⊥OA與點F,證明△AOB≌△CFA,得到點C的坐標,求出直線AC解析式,根據AC∥BD,所以直線BD的解析式的k值與直線AC的解析式k值相同,設出解析式,即可解答.③利用旋轉的性質進而得出A,B,C對應點位置進而得出答案,再利用以BC為半徑90176。圓心角的扇形面積求出答案;(3)利用平移的性質進而得出△ABC掃過的圖形是平行四邊形的面積.試題解析:(1)∵一次函數y=x+3的圖象與x軸、y軸分別交于A、B兩點,∴A(4,0),B(0,3),∴AO=4,BO=3,在Rt△AOB中,AB=,∵等腰直角三角形ABC,∠BAC=90176。AB=AC,∴∠BAO+∠CAF=90176?!唷螩AF=∠OBA,在△AOB和△CFA中,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(7,4)∵A(4,0)設直線AC解析式為y=kx+b,將A與C坐標代入得:,解得:,則直線AC解析式為y=x,∵將△ABC繞點B逆時針旋轉,當旋轉角為90176?!摺螩AB=90176?!郃C∥BD,∴設直線BD的解析式為y=x+b1,把B(0,3)代入解析式的:b1=3,∴直線BD的解析式為y=x+3;③因為旋轉過程中AC掃過的圖形是以BC為半徑90176。圓心角的扇形面積,所以可得:S=;(3)將△ABC向右平移到△A′B′C′的位置,△ABC掃過的圖形是一個平行四邊形和三角形ABC,如圖3:將C點的縱坐標代入一次函數y=x+3,求得C′的橫坐標為,平行四邊CAA′C′的面積為(7+)4=,三角形ABC的面積為55=△ABC掃過的面積為:.考點:幾何變換綜合題.15.倡導研究性學習方式,著力教材研究,習題研究,是學生跳出題海,提高學習能力和創(chuàng)新能力的有效途徑.下面是一案例,請同學們認真閱讀、研究,完成“類比猜想”的問題.習題 如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45176。∴把△ABE繞點A逆時針旋轉90176。45176。=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.類比猜想:(1)請同學們研究:如圖(2),在菱形ABCD中,點E、F分別在BC、CD上,當∠BAD=120176。時,還有EF=BE+DF嗎?請說明理由.(2)在四邊形ABCD中,點E、F分別在BC、CD上,當AB=AD,∠B+∠D=180176。至△ADE′,如圖(2),連結E′F,根據菱形和旋轉的性質得到AE=AE′,∠EAF=∠E′AF,利用“SAS”證明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120176。知F、D、E′共線,因此有EF=DE′+DF=BE+DF;根據前面的條件和結論可歸納出結論.試題解析:(1)當∠BAD=120176。時,EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120176?!郃B=AD,∠1+∠2=60176?!喟选鰽BE繞點A逆時針旋轉120176?!?=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60176?!唷螮AF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120176?!螮AF=∠BAD時,EF=BE+DF成立.理由如下:如圖(3),∵AB=AD,∴把△ABE繞點A逆時針旋轉∠BAD的度數至△ADE′,如圖(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180176?!帱cF、D、E′共線,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∴EF=DE′+DF=BE+DF;歸納:在四邊形ABCD中,點E、F分別在BC、CD上,當AB=AD,∠B+∠D=18017
點擊復制文檔內容
研究報告相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1