freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教案15[大全五篇]-在線瀏覽

2024-11-15 05:02本頁面
  

【正文】 于直角、銳角、鈍角三角形都是成立的。對于一個(gè)比例式來說,如果我們知道其中的三項(xiàng),那么就可以根據(jù)比例的運(yùn)算性質(zhì)得到第四項(xiàng)?!編煛浚浩鋵?shí)大家如果聯(lián)系三角形的內(nèi)角和公式的話,其實(shí)只要有上面的任意一個(gè)條件,我們都可以解出三角形中所有的未知邊和角。三、例題解析【例1】優(yōu)化P101例1分析:直接代入正弦定理中運(yùn)算即可QasinA=bsinB=10180。sin105sin30oo=20180。寫成數(shù)學(xué)式子就是asinA=bsinB=csinC。對于正弦定理的證明主,要有面積法和向量法,其實(shí)對于正弦定理的證明,還有很多別的方法,有興趣的同學(xué)下去之后可以自己去了解一下。過程與方法:讓學(xué)生從實(shí)際問題出發(fā),結(jié)合以前學(xué)習(xí)過的直角三角形中的邊角關(guān)系,引導(dǎo)學(xué)生不斷地觀察、比較、分析,采取從特殊到一般以及合情推理的方法發(fā)現(xiàn)并證明正弦定理,使學(xué)生體會完全歸納法在定理證明中的應(yīng)用;讓學(xué)生在應(yīng)用定理解決問題的過程中更深入的理解定理及其作用。從發(fā)現(xiàn)與證明的過程中體驗(yàn)數(shù)學(xué)的探索性與創(chuàng)造性,讓學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生的好奇心與求知欲。二、教學(xué)重點(diǎn)、難點(diǎn)分析重點(diǎn):通過對銳角三角形邊與角關(guān)系的探索,發(fā)現(xiàn)、證明正弦定理并運(yùn)用正弦定理解決一些簡單的三角形度量問題。三、教法與學(xué)法分析本節(jié)課是教材第一章《解三角形》的第一節(jié),所需主要基礎(chǔ)知識有直角三角形的邊角關(guān)系,三角函數(shù)相關(guān)知識。教學(xué)過程中鼓勵學(xué)生合作交流、動手實(shí)踐,通過對定理的推導(dǎo)、解讀、應(yīng)用,引導(dǎo)學(xué)生主動思考、總結(jié)、歸納解答過程中的內(nèi)在規(guī)律,形成一般結(jié)論。四、學(xué)情分析對于高一的學(xué)生來說,已學(xué)的平面幾何,解直角三角形,三角函數(shù)等知識,有一定觀察分析、解決問題的能力,但對前后知識間的聯(lián)系、理解、應(yīng)用有一定難度,因此思維靈活性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動性,多加以前后知識間的聯(lián)系,帶領(lǐng)學(xué)生直接參與分析問題、解決問題并品嘗勞動成果的喜悅。如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半。學(xué)生:如圖,過點(diǎn)A作BC邊上的高,垂直記作D然后,首先利用題目中的已知數(shù)據(jù)求出角C的大小,接著把題目中的相關(guān)數(shù)據(jù)和角C的值代入上述等式,即可求出b,即AC的值,然后可利用AC、AB、角B、角C的值和三角函數(shù)知識可分別求出CD和BD的長度,把所求出的CD和BD的長度相加即可求出BC的長度。定理的發(fā)現(xiàn):oo教師:如果把本題目中的有關(guān)數(shù)據(jù)變一下,其中A=50,B=80大家又該怎么做呢?學(xué)生1:同樣的做法(仍得作高)學(xué)生2:只需將已知數(shù)據(jù)代入上述等式即可求出兩邊的長度 教師:還需要再次作高嗎? 學(xué)生:不用教師:對于任意的銳角三角形中的“已知兩角及其夾邊,求其他兩邊的長”的問題是否都可以用上述兩個(gè)等式進(jìn)行解決呢? 學(xué)生:可以教師:既然這兩個(gè)等式適合于任意的銳角三角形,那么我們只需要記住這兩個(gè)等式,以后若是再遇見銳角三角形中的這種問題,直接應(yīng)用這兩個(gè)等式 并進(jìn)行代入求值即可。定理的探索:教師:大家知道,在直角三角形ABC中:若 則:所以:故:即: 在直角三角形中也成立教師:那么這個(gè)等式在鈍角三角形中是否成立,我們又該如何驗(yàn)證呢?請大家思考。(結(jié)論成立)教師:我們在銳角三角形中發(fā)現(xiàn)有這樣一個(gè)等式成立,接下來,用類比的方法對它分別在直角三角形和鈍角三角形中進(jìn)行驗(yàn)證,結(jié)果發(fā)現(xiàn),這個(gè)等式對于任意的直角三角形和任意的鈍角三角形都成立,那么我們此時(shí)能否說:“這個(gè)等式對于任意的三角形都成立”呢? 學(xué)生:可以教師:這就是我們這節(jié)課要學(xué)習(xí)的《正弦定理》(引出課題)定理的證明教師:展示正弦定理的證明過程證明:(1)當(dāng)三角形是銳角三角形時(shí),過點(diǎn)A作BC邊上的高線,垂直記作D,過點(diǎn)B向AC作高,垂直記作E,如圖:同理可得:所以易得(2)當(dāng)三角形是直角三角形時(shí);在直角三角形ABC中:若 因?yàn)椋核裕汗剩杭矗海?)當(dāng)三角形是鈍角三角形時(shí)(角C為鈍角)過點(diǎn)A作BC邊上的高線,垂直記作D由三角形ABC的面積可得 即:故:所以,對于任意的三角形都有教師:這就是本節(jié)課我們學(xué)習(xí)的正弦定理(給出定理的內(nèi)容)(解釋定理的結(jié)構(gòu)特征)思考:正弦定理可以解決哪類問題呢? 學(xué)生:在一個(gè)等式中可以做到“知三求一” 定理的應(yīng)用教師:接下來,讓我們來看看定理的應(yīng)用(回到剛開始的那個(gè)實(shí)際問題,用正弦定理解決)(板書步驟)成立。:讓學(xué)生從已有的幾何知識出發(fā),共同探究在任意三角形中,邊與其對角的關(guān)系,引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,并進(jìn)行定理基本應(yīng)用的實(shí)踐操作。教學(xué)重點(diǎn):正弦定理的探索和證明及其基本應(yīng)用。教學(xué)過程:一、復(fù)習(xí)引入創(chuàng)設(shè)情境:【師】:世界聞名的巴黎埃菲爾鐵塔,比其他的建筑高出很多?!緞?chuàng)設(shè)情境總結(jié)】:解決上述問題的過程中我們將距離的問題轉(zhuǎn)化為角,進(jìn)而轉(zhuǎn)化為三角函數(shù)的問題進(jìn)行計(jì)算。二、新課講解【師】:請同學(xué)們回憶一下,在直角三角形中各個(gè)角的正弦是怎么樣表示的?【生】:在直角三角形ABC中,sinA=ab,sinB=,sinC=1 ccabc,c=,c=,也就是說在Rt△ABCsinAsinBsinC【師】:有沒有一個(gè)量可以把三個(gè)式子聯(lián)系起來? 【生】:邊c可以把他們聯(lián)系起來,即c=中abc== sinAsinBsinC【師】:對,很美、很對稱的一個(gè)式子,用文字來描述就是:“在一個(gè)直角三角形中,各邊與它所對角的正弦比相等”,那么在斜三角形中,該式是否也成立呢?讓我們在幾何畫板中驗(yàn)證一下,對任意的三角形ABC是不是都有“各邊與它所對角的正弦比相等”成立?【師】:通過驗(yàn)證我們得到,在任意的三角形中都有各個(gè)邊和他所對的角的正弦值相等?!編煛浚褐庇^的印象并不能代替嚴(yán)格的數(shù)學(xué)證明,所以,只是直觀的驗(yàn)證是不夠的,那能不能對這個(gè)定理給出一個(gè)證明呢?【生】:可以用三角形的面積公式對正弦定理進(jìn)行證明:S=1111absinC=acsinB=bcsinA,然后三個(gè)式子同時(shí)處以abc就可以得2222到正弦定理了。怎么樣利用向量只是來證明正弦定理呢?大家觀察,這個(gè)式子涉及到的是邊和角,即向量的模和夾角之間的關(guān)系。即在sinAsinCsinBsinC銳角三角形ABC中有每條邊和它所對的角的正弦值相等這個(gè)結(jié)論。即在鈍角三角sinAsinCsinBsinC形ABC中也有每條邊和它所對的角的正
點(diǎn)擊復(fù)制文檔內(nèi)容
化學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1