【摘要】問題探究RCsincBsinbAsinaABCRCBAcbaCABCRt2901???????? 圓的半徑,求證:的外接是所的邊長,,,為角,,,中,:在 探究結(jié)論是否還成立?中,上述:在任意一個三角形 探究ABC2CsinBsinAsincbaCsin
2025-04-13 14:29
【摘要】第一課時正弦定理(1)一.學(xué)習(xí)目標(biāo):1.了解正弦定理推導(dǎo)過程;2.掌握正弦定理內(nèi)容;3.會利用正弦定理求解簡單斜三角形邊角問題。二.學(xué)習(xí)重難點:重點:正弦定理證明及應(yīng)用;難點:正弦定理的證明,正弦定理在解三角形時應(yīng)用思路.三.自主預(yù)習(xí):1.一般地,把三角形的三個內(nèi)角A,B,C和它們的對邊叫做三角形的________,已知三角形的幾個元素求
2025-07-26 00:37
【摘要】正弦定理高中數(shù)學(xué)高一年級必修五第一章第學(xué)習(xí)目標(biāo)?讓學(xué)生從已有的知識經(jīng)驗出發(fā),通過對特殊三角形邊角間數(shù)量關(guān)系的探求,發(fā)現(xiàn)正弦定理;再由特殊到一般,從定性到定量,探究在任意三角形中,邊與其對應(yīng)角的關(guān)系,引導(dǎo)學(xué)生通過觀察、猜想、比較推、導(dǎo)正弦定理,由此培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思考能力;
2025-04-13 12:58
【摘要】【創(chuàng)新設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)(人教B版)必修5正弦定理雙基達(dá)標(biāo)限時20分鐘1.在△ABC中,若∠B=135°,AC=2,則BCsinA=().A.2B.1C.2D.22解析△ABC中,由正弦定理BCsin
2025-01-31 02:11
【摘要】第一篇:高中數(shù)學(xué)《正弦定理》教案3蘇教版必修5 第3課時正弦定理 知識網(wǎng)絡(luò) ì判斷三角形狀正弦定理的應(yīng)用 ? í平面幾何中某些問題 ? ?解的個數(shù)的判定 學(xué)習(xí)要求 1.掌握正弦定理和...
2024-10-21 04:50
【摘要】第一篇:高中數(shù)學(xué)《正弦定理》教案1蘇教版必修5 第1課時:§(1) 【三維目標(biāo)】: 一、知識與技能 ,掌握正弦定理的內(nèi)容和推導(dǎo)過程; (會運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問...
2024-10-07 01:35
【摘要】第一章解三角形§正弦定理和余弦定理1.正弦定理(一)自主學(xué)習(xí)知識梳理1.一般地,把三角形的三個角A,B,C和它們的對邊a,b,c叫做三角形的________.已知三角形的幾個元素求其他元素的過程叫做____________.2.在Rt△ABC中,C=90°,則有
2025-01-22 23:20
【摘要】正弦定理(二)自主學(xué)習(xí)知識梳理1.正弦定理:asinA=bsinB=csinC=2R的常見變形:(1)sinA∶sinB∶sinC=________;(2)asinA=bsinB=csinC=a+b+csinA+sinB+sinC=________;(3)a=____
2025-02-07 06:40
【摘要】中學(xué)數(shù)理化本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理1正弦定理和余弦定理綜合復(fù)習(xí)中學(xué)數(shù)理化本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理21.正弦定理:RCcBbAa2sinsinsin???一、復(fù)習(xí):中學(xué)數(shù)理化本資料由書利華教育網(wǎng)
2025-01-20 12:10
【摘要】正弦定理作業(yè)1、在ABC?中,若Abasin23?,則B等于()A.?30B.?60C.?30或?150D.?60或?120[2、在ABC?中,已知?45,1,2???Bcb,則a等于()A.226?B.
2025-02-02 14:39
【摘要】2010—2011學(xué)年高二第一學(xué)期段考數(shù)學(xué)科 (答題時間:120分鐘總分:150分) 一、選擇題(每小題5分,共60分) 1、某大學(xué)共有本科生5000人,其中一、二、三、四年級的人數(shù)比為4∶3∶...
2025-03-09 22:26
【摘要】正弦定理課件1、邊的關(guān)系:2、角的關(guān)系:3、邊角關(guān)系:1)兩邊之和大于第三邊;兩邊之差小于第三邊2)在直角三角形中:a2+b2=c21)A+B+C=1800CBAsin)sin()2??CBAcos)cos(???2cos2sinCBA??1)大邊對大角,大角對大邊,等邊
2025-01-20 05:41
【摘要】任意角【學(xué)習(xí)要求】1.理解正角、負(fù)角、零角與象限角的概念.2.掌握終邊相同角的表示方法.【學(xué)法指導(dǎo)】1.解答與任意角有關(guān)的問題的關(guān)鍵在于抓住角的四個“要素”:頂點、始邊、終邊和旋轉(zhuǎn)方向.2.確定任意角的大小要抓住旋轉(zhuǎn)方向和旋轉(zhuǎn)量.3.學(xué)習(xí)象限角時,注意角在直角坐標(biāo)系中的放法,在這個統(tǒng)一前提下,才能對終邊落在坐標(biāo)軸上的
2025-02-06 23:47
【摘要】第一篇:高中數(shù)學(xué)新人教A版必修5 課題:§ ●教學(xué)目標(biāo)知識與技能:能夠運(yùn)用正弦定理、余弦定理等知識和方法進(jìn)一步解決有關(guān)三角形的問題,掌握三角形的面積公式的簡單推導(dǎo)和應(yīng)用過程與方法:本節(jié)課補(bǔ)充了三角...
2024-10-28 16:07
【摘要】1.1正弦定理(教學(xué)設(shè)計)教學(xué)目標(biāo)1.知識與技能:通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問題。2.過程與方法:讓學(xué)生從已有的幾何知識出發(fā),共同探究在任意三角形中,邊與其對角的關(guān)系,引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,并進(jìn)行定理基本應(yīng)用
2025-01-31 13:35