【摘要】等比數(shù)列的前n項(xiàng)和第1課時(shí)一、新課導(dǎo)入:633222221???????S即,①646332222222???????S,②②-①得即.,12264???SS1264??S由此對(duì)于一般的等比數(shù)列,其前項(xiàng)和n112111??????nnqaqaqaaS
2024-09-26 01:37
【摘要】課時(shí)教學(xué)設(shè)計(jì)首頁授課教師:授課時(shí)間:10年9月8日課題課型新授課第幾課時(shí)1課時(shí)教學(xué)目標(biāo)(三維)1..理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法,體會(huì)轉(zhuǎn)化的思想;項(xiàng)和公式,并能運(yùn)用公式解決簡單的問題,用方程的思想認(rèn)識(shí)等比數(shù)列前項(xiàng)和公式,利用公式知三求
2024-09-28 16:48
【摘要】等比數(shù)列復(fù)習(xí):(1)什么叫等差數(shù)列?(2)等差數(shù)列的通項(xiàng)公式是什么?如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列.其表示為:an=a1+(n-1)d)2,(1????nddaann為常數(shù)(3)在等差數(shù)列{an}中,若m+n=p+q(m,n,p,q是正整數(shù)),
2025-02-23 16:31
【摘要】人民教育出版社高中《數(shù)學(xué)》第一冊(上)第三章等比數(shù)列前n項(xiàng)和公式教師:武占斌山西大同市第二中學(xué)校說課的四個(gè)環(huán)節(jié)?教材分析?教法選取?學(xué)法指導(dǎo)?教學(xué)程序一、教材分析1、教材背景分析:等比數(shù)列的前n項(xiàng)和等差數(shù)列等比數(shù)列通項(xiàng)、遞推公式求和數(shù)列
2025-07-13 08:13
【摘要】第3講等比數(shù)列及其前n項(xiàng)和【2022年高考會(huì)這樣考】1.以等比數(shù)列的定義及等比中項(xiàng)為背景,考查等比數(shù)列的判定.2.考查通項(xiàng)公式、前n項(xiàng)和公式以及性質(zhì)的應(yīng)用.【復(fù)習(xí)指導(dǎo)】本節(jié)復(fù)習(xí)時(shí),緊扣等比數(shù)列的定義,推導(dǎo)相關(guān)的公式與性質(zhì),通過基本題型的訓(xùn)練,掌握通性、通法.基礎(chǔ)梳理1.等比數(shù)列的定義如果一個(gè)數(shù)列從
2025-06-17 04:33
【摘要】國際象棋起源于印度,關(guān)于國際象棋有這樣一個(gè)傳說,國王要獎(jiǎng)勵(lì)國際象棋的發(fā)明者,問他有什么要求,發(fā)明者說:“請?jiān)谄灞P上的第一個(gè)格子上放1粒麥子,第二個(gè)格子上放2粒麥子,第三個(gè)格子上放4粒麥子,第四個(gè)格子上放8粒麥子,依次類推,直到第64個(gè)格子放滿為止。”國王慷慨地答應(yīng)了他。你認(rèn)為國王有能力滿足上述要求嗎?左
2025-01-21 08:48
【摘要】等差數(shù)列的公差:等差數(shù)列的通項(xiàng)公式:等差數(shù)列的定義:知識(shí)回顧:等差數(shù)列的通項(xiàng)公式是如何推導(dǎo)?觀察思考:以下幾個(gè)數(shù)列有何共同特點(diǎn)?(1)2,4,8,16,…(2)2,2,4,4…22(4)5,5,5,5,…(3)1,,,,…
【摘要】等比數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和公式的有關(guān)性質(zhì)解題.n項(xiàng)和公式解決實(shí)際問題.1.等比數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)公比q≠1時(shí),Sn=______________=_____;當(dāng)q=1時(shí),Sn=____________.2.等比數(shù)列前n項(xiàng)和的性質(zhì):(1)連續(xù)m項(xiàng)的和(如Sm、S
2025-02-07 10:13
【摘要】第9課時(shí):§等比數(shù)列(3)【三維目標(biāo)】:一、知識(shí)與技能1掌握“錯(cuò)位相減”的方法推導(dǎo)等比數(shù)列前項(xiàng)和公式;,并能運(yùn)用公式解決簡單的實(shí)際問題;二、過程與方法,提高學(xué)生的建模意識(shí)及探究問題、分析與解決問題的能力,體會(huì)公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì).“錯(cuò)位相減法”這種算法中,體會(huì)“消除差
2024-07-18 23:07
【摘要】2.等比數(shù)列的前n項(xiàng)和1.(1)等比數(shù)列的前n項(xiàng)和公式:當(dāng)q≠1時(shí),Sn=a1(1-qn)1-q或Sn=a1-anq1-q,當(dāng)q=1時(shí),Sn=na1.(2)已知數(shù)列{an}是等比數(shù)列,a1=3,公比q=2,則其前6項(xiàng)和S6=189.(3)已知數(shù)列{an}是等比數(shù)列,a1=
2025-02-10 13:12
【摘要】課題:等比數(shù)列的n項(xiàng)和概念班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程,理解前n項(xiàng)和公式的含義,并會(huì)用公式進(jìn)行有關(guān)計(jì)算【課前預(yù)習(xí)】1.推導(dǎo)公式:(1)研究633222221??????的計(jì)算;
2025-01-23 01:05
【摘要】等比數(shù)列的前n項(xiàng)和(一)課時(shí)目標(biāo)n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決一些簡單問題.1.等比數(shù)列前n項(xiàng)和公式:(1)公式:Sn=?????=qq=.(2)注意:應(yīng)用該公式時(shí),一定不要忽略q=1的情況.2.若{an}是等比數(shù)列,且公比q≠1,則前n項(xiàng)
【摘要】等比數(shù)列通項(xiàng)公式:等比數(shù)列的定義:等比數(shù)列的性質(zhì):各個(gè)格子里的麥粒數(shù)依次是發(fā)明者要求的麥粒總數(shù)就是1+2+23+…+263=國王能否滿足發(fā)明者的要求?1,2,22,…,263如何求出這個(gè)和式的具體數(shù)值呢?問題1:發(fā)明者要求的麥??倲?shù)是:S64=1+2+22+…+263問題2:一般地,對(duì)于等比數(shù)列一般地
2024-09-15 15:48
【摘要】等比數(shù)列的前n項(xiàng)和(一)李超2020年9月(一)知識(shí)回顧::11???nnqaa:②在等比數(shù)列{}中,若則()naqpnm???qpnmaaaa?????Nqpnm
2024-12-01 12:18
【摘要】等比數(shù)列的前n項(xiàng)和一、等比數(shù)列的前n項(xiàng)和公式1.乘法運(yùn)算公式法∵Sn=a1+a2+a3+…+an=a1+a1q+a1q2+…+a1qn-1=a1(1+q+q2+…+qn-1)=a1·=,∴Sn=.2.方程法∵Sn=a1+a1q+a1q2+…+a1qn-1=a1+q(a1+a1q+…+a1qn-2)=a1+q(a1+a1q+…+a1qn-1-
2024-08-09 16:17