【摘要】120y0x1xx?y?xyOy=f(x)1yAB00()()fxxfxyxx???????物體運動的平均速度00()()sttststt???????物體運動的瞬時速度0000()()limlimttstts
2025-01-21 15:24
【摘要】2020/12/242020/12/24???,??th,.,at,,規(guī)律導數(shù)的符號有什么變化地相應特點此點附近的圖象有什么是多少呢在此點的導數(shù)函數(shù)那么距水面的高度最大高臺跳水運動員時我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調(diào)遞增??0th'?單調(diào)遞減??0ah'?
2025-01-20 05:49
【摘要】利用導數(shù)研究函數(shù)的極值(二)一、基礎過關(guān)1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是()A.f(2),f(3)B.f(3),f(5)C.f(2),f(5)D.f(5),f(3)2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值
2025-01-22 10:30
【摘要】1§函數(shù)的極值與導數(shù)學習目標、極小值,最大值和最小值的概念;、極小值的方法來求函數(shù)的極值;.和步驟.預習與反饋(預習教材P26~P31,找出疑惑之處)復習1:設函數(shù)y=f(x)在某個區(qū)間內(nèi)有導數(shù),如果在這個區(qū)間內(nèi)0y??,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)為函
2025-01-23 03:14
【摘要】利用導數(shù)研究函數(shù)的極值(一)一、基礎過關(guān)1.函數(shù)y=f(x)的定義域為(a,b),y=f′(x)的圖象如圖,則函數(shù)y=f(x)在開區(qū)間(a,b)內(nèi)取得極小值的點有()A.1個B.2個C.3個D.4個2.下列關(guān)于函數(shù)的極值的
2025-02-05 11:30
【摘要】利用導數(shù)判斷函數(shù)的單調(diào)性【教學目標】了解并掌握函數(shù)單調(diào)性的定義以及導數(shù)與函數(shù)單調(diào)性的關(guān)系,會利用導數(shù)求函數(shù)的單調(diào)區(qū)間,會利用導數(shù)畫出函數(shù)的大致圖像。【教學重點】利用導數(shù)求單調(diào)區(qū)間【教學難點】導數(shù)與單調(diào)性的關(guān)系一、課前預習(閱讀教材24--25頁,填寫知識點.):怎樣判斷函數(shù)的單調(diào)性?1、__________2、__
【摘要】一輪復習學案§應用(1)姓名☆復習目標:1.理解可導函數(shù)的單調(diào)性與其導數(shù)的關(guān)系;2.了解可導函數(shù)在某點取得極值的必要條件和充分條件(導數(shù)在極值點兩側(cè)異號)。?基礎熱身:1.3()31fxaxx???對于?
2025-02-10 01:48
【摘要】導數(shù)公式【教學目標】能根據(jù)導數(shù)的定義,求函數(shù)cy?,xy?,2xy?,xy1?,xy?的導數(shù)。能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù)?!窘虒W重點】常數(shù)函數(shù)、冪函數(shù)的導數(shù)【教學難點】利用公式求導一、課前預習(閱讀教材14--17頁,填寫知識點)__
2025-01-22 10:27
【摘要】極值點教學目的:、極小值的概念.、極小值的方法來求函數(shù)的極值.教學重點:極大、極小值的概念和判別方法,以及求可導函數(shù)的極值的步驟.教學難點:對極大、極小值概念的理解及求可導函數(shù)的極值的步驟授課類型:新授課課時安排:1課時教具:多媒體、實物投影儀內(nèi)容分析:對極大、極小值概念的理
2025-01-23 00:26
【摘要】復合函數(shù)的導數(shù)復習回顧基本初等函數(shù)的求導公式簡記??????????????xxaxxeeaaaxxxxnxxCaxxxxnn1ln1lo.6sincocossi.2'''
2024-09-04 22:48
【摘要】導數(shù)及其應用第一章導數(shù)的應用第1課時利用導數(shù)判斷函數(shù)的單調(diào)性第一章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習研究股票時,我們最關(guān)心的是股票的發(fā)展趨勢(走高或走低)以及股票價格的變化范圍(封頂或保底).從股票走勢曲線圖來看,股票有升有降.在數(shù)學上,函數(shù)曲線也有升有降,就是
2025-01-20 20:10
【摘要】1導數(shù)的幾何意義311..2?????????,.,,''的幾何意義是什么呢導數(shù)么那附近的變化情況在數(shù)反映了函處的瞬時變化率在表示函數(shù)導數(shù)我們知道0000xfxxxfxxxfxf??3P1P2P3P4PTTTTPP??
2025-01-21 01:21
【摘要】復習:合情推理?歸納推理從特殊到一般?類比推理從特殊到特殊從具體問題出發(fā)觀察、分析比較、聯(lián)想提出猜想歸納類比觀察與是思考,2整除,,銅能夠?qū)щ?銅是金屬,
【摘要】本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2Z=a+bi(a,b∈R)實部!虛部!復數(shù)的代數(shù)形式:一個復數(shù)由有序?qū)崝?shù)對(a,b)確定本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理3實數(shù)可以用數(shù)軸上的點來表示。實數(shù)數(shù)軸上的點一一對應(數(shù))(形)類比實數(shù)
【摘要】-歸納推理歌德巴赫猜想:“任何一個不小于6的偶數(shù)都等于兩個奇數(shù)之和”即:偶數(shù)=奇質(zhì)數(shù)+奇質(zhì)數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學難題之一。哥德巴赫是德國一位中學教師,也是一位著名的數(shù)學家,生于1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發(fā)現(xiàn),每個