【摘要】課題:瞬時變化率??導數(shù)教學目標:(1)什么是曲線上一點處的切線,如何作曲線上一點處的切線?如何求曲線上一點處的曲線?注意曲線未必只與曲線有一個交點。(2)了解以曲代直、無限逼近的思想和方法(3)瞬時速度與瞬時加速度的定義及求解方法。(4)導數(shù)的概念,其產生的背景,如何求函數(shù)在某點處的
2025-01-22 21:26
【摘要】函數(shù)的極值與導數(shù)(a,b)內,如果,那么函數(shù)在這個區(qū)間內單調遞增;如果,那么函數(shù)在這個區(qū)間內單調遞減.0)(??xf)(xfy?0)(??xf)(xfy?2.對x∈(a,b),如果
2025-01-21 12:13
【摘要】導數(shù)及其應用第一章導數(shù)第2課時瞬時變化率與導數(shù)第一章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習中國高速鐵路,常被簡稱為“中國高鐵”.中國是世界上高速鐵路發(fā)展最快、系統(tǒng)技術最全、集成能力最強、運營里程最長、運營速度最快、在建規(guī)模最大的國家.同
2025-01-21 01:21
【摘要】(第一課時)單縣一中時克然多米諾骨牌問題情境一已知數(shù)列的通項公式為}{na22)55(???nnan(1)求出其前四項,你能得到什么樣的猜想?(2)你的猜想正確嗎?對于數(shù)列{},na)1(2111????nnnaaa)∈(*Nn
2025-01-20 12:01
【摘要】1.3.2函數(shù)的極值與導數(shù)(1)一、教學目標:理解函數(shù)的極大值、極小值、極值點的意義.掌握函數(shù)極值的判別方法.進一步體驗導數(shù)的作用.二、教學重點:求函數(shù)的極值.教學難點:嚴格套用求極值的步驟.三、教學過程:(一)函數(shù)的極值與導數(shù)的關系1、觀察下圖中的曲線a點的函數(shù)值f(a)比它臨近點的函數(shù)值都大.b點的函數(shù)值f(
2025-01-22 22:43
【摘要】導數(shù)的計算(2)復習導函數(shù)的定義00()()()limlimxxyfxxfxfxyxx???????????????今后我們可以直接使用的基本初等函數(shù)的導數(shù)公式表11.(),'()0;2.(),'();3.()s
【摘要】導數(shù)的計算(3)復習導函數(shù)的定義00()()()limlimxxyfxxfxfxyxx???????????????今后我們可以直接使用的基本初等函數(shù)的導數(shù)公式表11.(),'()0;2.(),'();3.()s
【摘要】要甜的,好吃的!從前有一位富翁想吃芒果,打發(fā)他的仆人到果園去買,并告訴他:"要甜的,好吃的,你才買."仆人拿好錢就去了.到了果園,園主說:"我這里樹上的芒果個個都是甜的,你嘗一個看."仆人說:"我嘗一個怎能知道全體呢我應當個個都嘗過,嘗一個買一個,這樣最可
【摘要】變化率問題微積分主要與四類問題的處理相關:?一、已知物體運動的路程作為時間的函數(shù),求物體在任意時刻的速度與加速度等;?二、求曲線的切線;?三、求已知函數(shù)的最大值與最小值;?四、求長度、面積、體積和重心等。導數(shù)是微積分的核心概念之一它是研究函數(shù)增減、變化快慢、最大(小)值等問題最一般、最有效的工具。問題1氣
2025-01-20 12:02
【摘要】微積分基本定理定理(微積分基本定理)如果()fx是在區(qū)間],[ba上的連續(xù)函數(shù),并且()(),Fxfx??,則)()()(aFbFdxxfba???.記:()()()|baFbFaFx??則:()()|()()bbaafxdxFxF
【摘要】定積分的概念:在直角坐標系中,由連續(xù)曲線y=f(x),直線x=a、x=b及x軸所圍成的圖形叫做曲邊梯形。Oxyaby=f(x)一.求曲邊梯形的面積x=ax=b因此,我們可以用這條直線L來代替點P附近的曲線,也就是說:在點P附近,曲線可以看作直線(即在很小范圍內
【摘要】(一)一、教學目標:了解可導函數(shù)的單調性與其導數(shù)的關系.掌握利用導數(shù)判斷函數(shù)單調性的方法.二、教學重點:利用導數(shù)判斷一個函數(shù)在其定義區(qū)間內的單調性教學難點:判斷復合函數(shù)的單調區(qū)間及應用;利用導數(shù)的符號判斷函數(shù)的單調性.三、教學過程(一)復習引入1.增函數(shù)、減函數(shù)的定義一般地,設函數(shù)f(x)的定義域為I:如果對于屬于定義域
2025-01-23 03:14
【摘要】第一課時:變化率與導數(shù)BCA案主備人:王明華審核人:付之美使用時間:教學目標:1.借助實例分析引入變化率的概念,為學習導數(shù)奠定基礎,幫助學生理解實例的過程。2.理解導數(shù)的概念,掌握球導數(shù)的定義方法。3.理解導數(shù)的幾何意義,物理意義。B案課前預習::函數(shù))(xfy?,
2025-02-10 22:39
【摘要】幾個常用函數(shù)的導數(shù)一、復習,過曲線某點的切線的斜率的精確描述與求值;物理學中,物體運動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質相同的數(shù)學表達式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導數(shù),導數(shù)源于實踐,又服務于實踐.:(1)()();yfx
2025-01-20 17:34
【摘要】知識回顧導數(shù)的幾何意義:(瞬時速度或瞬時加速度)物理意義:曲線在某點處的切線的斜率;物體在某一時刻的瞬時度。由定義求導數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx??????當如
2025-01-21 08:46