【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo)、用料最省、效率最高等優(yōu)化問題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問題中的作用.過程中,體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性.課前預(yù)學(xué):問題1:一般地,如果在區(qū)間[a,b]上函數(shù)y=f(x)的圖象是一條連續(xù)不斷的曲線,那么它必有最大
2025-02-07 06:44
【摘要】導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)解函數(shù)應(yīng)用題時(shí),要注意四個(gè)步驟:1、閱讀理解,審清題意讀題時(shí)要做到逐字逐句,讀懂題中的文字?jǐn)⑹?/span>
2025-01-20 15:20
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)第三章第10課導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用(1)教學(xué)案蘇教版選修1-1班級(jí):高二()班姓名:____________教學(xué)目標(biāo):通過生活中優(yōu)化問題的學(xué)習(xí),體會(huì)導(dǎo)數(shù)在解決實(shí)際問題中的作用,促進(jìn)學(xué)生全面認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值;通過實(shí)際問題的研究,促進(jìn)學(xué)生分析問題、解決問題以及數(shù)
2025-01-26 01:03
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用2導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):、用料最省、效率最高等優(yōu)化問題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問題中的作用.,體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性.課前預(yù)學(xué):16的線段分成兩段,各圍成一個(gè)正方形,這兩個(gè)正方形面積的最小值為.,其母線長
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,區(qū)間IA.?如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)值x1、x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說y=f(x)在區(qū)間I上是單調(diào)增函數(shù),I稱為y=f(x)的單調(diào)增區(qū)間.如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)值x1、x2
2025-01-21 08:56
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用——極大值與極小值一般地,設(shè)函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系知識(shí)回顧1)如果在某區(qū)間上,那么f(x)為該區(qū)間上的增函數(shù),?f(x)02)如果在某區(qū)間上
2025-01-20 23:31
【摘要】1、求函數(shù)在某點(diǎn)的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導(dǎo)數(shù)主要有哪些方面的應(yīng)用?應(yīng)用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導(dǎo)數(shù)法1)如果在某區(qū)
【摘要】導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)例1:在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無
2025-01-20 11:00
【摘要】2020/12/2511、最值的概念(最大值與最小值)如果在函數(shù)定義域I內(nèi)存在x0,使得對(duì)任意的x∈I,總有f(x)≤f(x0),則稱f(x0)為函數(shù)f(x)在定義域上的最大值;最值是相對(duì)函數(shù)定義域整體而言的.如果在函數(shù)定義域I內(nèi)存在x0,使得對(duì)任意的x∈I,總有f(x)≥f(x0),則稱f(x0)為
2025-01-21 08:46
【摘要】圖1導(dǎo)數(shù)在實(shí)際生活的實(shí)際應(yīng)用同步練習(xí)1.一個(gè)膨脹中的球形氣球,其體積的膨脹章恒為/s,則當(dāng)其半徑增至m時(shí),半徑的增長率是________.2.將長為a的鐵絲剪成兩段,各圍成長與寬之比為2∶1及3∶2的矩形,那么這兩個(gè)矩形面積和的最小值為.3.如圖1,將邊
2025-02-07 09:29
【摘要】DEABC導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用同步練習(xí)1.一點(diǎn)沿直線運(yùn)動(dòng),如果由始點(diǎn)起經(jīng)過t秒后的距離為43215243sttt???,那么速度為零的時(shí)刻是()A.1秒末B.0秒C.4秒末D.0,1,4秒末2.某公司在
【摘要】aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0復(fù)習(xí):函數(shù)單調(diào)性與導(dǎo)數(shù)關(guān)系如果在某個(gè)區(qū)間內(nèi)恒有,則為常數(shù).0)(??xf)(xf設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)可導(dǎo),f(
2025-01-20 12:02
【摘要】導(dǎo)數(shù)的應(yīng)用知識(shí)與技能:1.利用導(dǎo)數(shù)研究函數(shù)的切線、單調(diào)性、極大(小)值以及函數(shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲?;2.利用導(dǎo)數(shù)求解一些實(shí)際問題的最大值和最小值。過程與方法:1.通過研究函數(shù)的切線、單調(diào)性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲?,
2025-01-20 11:59
【摘要】§導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用目的要求:(1)鞏固函數(shù)的極值與最值(2)利用導(dǎo)數(shù)解決應(yīng)用題中有關(guān)最值問題例1.在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無蓋的方底箱子,箱底的邊長是多少時(shí),箱底的容積最大?最大容積是多少?
【摘要】一、復(fù)習(xí)幾何意義:曲線在某點(diǎn)處的切線的斜率;(瞬時(shí)速度或瞬時(shí)加速度)物理意義:物體在某一時(shí)刻的瞬時(shí)度。2、由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2025-01-20 15:21