【摘要】拋物線及其標準方程(一)城郊中學:代俊俊拋物線的生活實例探照燈的燈面平面內與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。注1定點F叫做拋物線的焦點。2定直線L叫做拋物線的準線3點F在直線外(若點在直線上呢?)一拋物線的定義的軌跡是
2025-01-20 15:04
【摘要】-*-雙曲線的簡單性質首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.掌握雙曲線的范圍、對稱性、頂點、漸近線及離心率等簡單幾何性質.2.感受雙曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,體會數(shù)形結合思想.
2025-01-19 23:24
【摘要】課題拋物線的簡單性質(一)學習目標,理解焦點弦的概念,理解拋物線性質與標準方程的關系.,進一步理解用代數(shù)方法研究幾何性質的優(yōu)越性,感受坐標法和數(shù)形結合的基本思想.,類比拋物線的性質;由拋物線的方程研究性質,鞏固數(shù)形結合思想.學習重點:拋物線的性質,理解拋物線性質與標準方程的關系.學習難點:
2025-01-21 18:59
【摘要】第三章§2理解教材新知把握熱點考向應用創(chuàng)新演練知識點考點一考點二考點三太陽能是最清潔的能源.太陽能灶是日常生活中應用太陽能的典型例子.太陽能灶接受面是拋物線一部分繞其對稱軸旋轉一周形成的曲面.它的原理是太陽光線(平行光束)射到拋物鏡面
2025-01-20 23:19
【摘要】第2課時橢圓的簡單性質a,b,c之間的關系.,并能利用簡單幾何性質求橢圓的標準方程.,討論研究其幾何性質,使學生初步嘗試利用橢圓的標準方程來研究橢圓的幾何性質的基本方法,加深對曲線與方程的理解,同時提高分析問題和解決問題的能力.1998年12月19日,太原衛(wèi)星發(fā)射中心為摩托羅拉公司(美國)
2025-01-22 20:36
【摘要】拋物線的標準方程投籃運動噴泉太陽灶太陽灶軸截面示意圖已知太陽灶的灶口直徑為2米,灶深為,太陽灶的聚光點應該在什么位置?ABM2把方程y2=2px(p>0)
2025-01-20 23:31
【摘要】拋物線復習課【知識回顧】標準方程圖形焦點準線)0(22??ppxy)0(22??ppyxxyoF.xyFo)0,2(pF.yxoF2px??)2,0(pFxoyF2py??)0(22
2025-01-21 13:30
【摘要】拋物線的幾何性質前面我們已學過橢圓與雙曲線的幾何性質,它們都是通過標準方程的形式研究的,現(xiàn)在請大家想想拋物線的標準方程、圖形、焦點及準線是什么?一、復習回顧:圖形方程焦點準線lFyxOlFyxOlFyxO
2025-01-21 08:56
【摘要】【成才之路】2021-2021學年高中數(shù)學雙曲線的簡單性質練習北師大版選修1-1一、選擇題1.雙曲線與橢圓x216+y264=1有相同的焦點,它的一條漸近線為y=-x,則雙曲線方程為()A.x2-y2=96B.y2-x2=160C.x2-y2=80D.y2-x2=24[答
2025-01-31 19:11
【摘要】【成才之路】2021-2021學年高中數(shù)學拋物線及其標準方程練習北師大版選修1-1一、選擇題1.平面內到定點F的距離等于到定直線l的距離的點的軌跡是()A.拋物線B.直線C.拋物線或直線D.不存在[答案]C[解析]當點F在直線l上時,為過點F與l垂直的直線;當點F不在直線l上
【摘要】第8課時雙曲線的簡單性質,并能利用這些簡單幾何性質求標準方程..,提高解方程組和計算的能力,能利用雙曲線的定義、標準方程、幾何性質,解決與雙曲線有關的實際問題,提高分析問題與解決問題的能力.如圖,某工廠有一雙曲線型自然通風塔,其外形是雙曲線的一部分繞其虛軸旋轉所成的曲面,已知該塔最小半徑
2025-02-06 23:43
【摘要】圓錐曲線與方程第二章§1橢圓橢圓的簡單幾何性質第二章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習.2.利用橢圓的簡單幾何性質解決一些簡單問題.橢圓的簡單幾何性質1.觀察橢圓的圖形可以發(fā)現(xiàn),橢圓是_____對稱圖形,也是_____
2025-01-19 23:27
【摘要】拋物線的幾何性質2復習:1拋物線的幾何性質圖形方程焦點準線范圍頂點對稱軸elFyxOlFyxOlFyxOlFyxOy2=2px(p0)y2=-2px(p0)x2=2py
【摘要】橢圓的簡單性質課程目標學習脈絡1.掌握橢圓的中心、頂點、長軸、短軸、離心率的概念,理解橢圓的范圍和對稱性.2.掌握橢圓標準方程的a,b,c,e的幾何意義及a,b,c,e之間的相互關系.3.用代數(shù)法研究曲線的幾何性質,熟練掌握橢圓的幾何性質,體會數(shù)形結合的思想.12
2025-01-19 23:22
【摘要】第3課時橢圓的簡單性質的應用,加強對研究方法的思想滲透及運用數(shù)形結合思想解決問題的能力.,體會數(shù)形結合的思想以及數(shù)學的對稱美、和諧美..上一節(jié)我們共同學習了橢圓的概念、橢圓的標準方程、橢圓的簡單幾何性質,并能利用它們處理簡單的橢圓問題.橢圓是學習雙曲線和拋物線的基礎,對整個圓錐曲線的學習都起著至
2025-01-22 23:16